Merge stm32-core repo into sta-core

This commit is contained in:
Henrik Stickann 2023-01-19 23:09:32 +01:00
commit 04ae302ab3
18 changed files with 1347 additions and 1 deletions

129
include/sta/stm32/can.hpp Normal file
View File

@ -0,0 +1,129 @@
/**
* @file
* @brief Implementation of CanController using STM32 HAL.
*/
#ifndef STA_STM32_CAN_HPP
#define STA_STM32_CAN_HPP
/**
* @defgroup stm32CAN CAN
* @ingroup stm32
* @brief STM32 CAN module.
*
* Check @ref stm32BuildConfig for configuration options.
*/
#ifdef DOXYGEN
/**
* @def STA_STM32_CAN_ENABLE
* @brief Enable module.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_CAN_ENABLE
/**
* @def STA_STM32_CAN_GLOBAL
* @brief Create global CanBus object using this CAN instance.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_CAN_GLOBAL
#endif // DOXYGEN
#include <sta/config.hpp>
#ifdef STA_STM32_CAN_ENABLE
#include <sta/can_bus/controller.hpp>
#include <sta/stm32/hal.hpp>
namespace sta
{
/**
* @brief Implementation of CanController interface using HAL.
*
* @ingroup stm32CAN
*/
class STM32CanController : public CanController
{
public:
static constexpr uint8_t MAX_FILTER_COUNT = 14; /**< Max number of filters */
static constexpr uint8_t MAX_FIFO_COUNT = 2; /**< Max number of FIFOs */
static constexpr uint8_t MAX_PAYLOAD_SIZE = 8; /**< Maximum payload size */
public:
/**
* @param handle CAN handle
*/
STM32CanController(CAN_HandleTypeDef * handle);
/**
* @brief Enable RX pending interrupts.
*/
void enableRxInterrupts();
/**
* @brief Start CAN controller.
*/
void start();
/**
* @brief Stop CAN controller.
*/
void stop();
// RX/TX
//
bool sendFrame(const CanTxHeader & header, const uint8_t * payload) override;
bool receiveFrame(uint8_t fifo, CanRxHeader * header, uint8_t * payload) override;
uint32_t getRxFifoFlags() override;
// RX Filter
//
void configureFilter(uint8_t idx, const CanFilter & filter, bool active = false) override;
void enableFilter(uint8_t idx) override;
void disableFilter(uint8_t idx) override;
void clearFilters() override;
private:
/**
* @brief Initialize filter settings.
*/
void initFilters();
private:
CAN_HandleTypeDef * handle_; /**< CAN handle */
CAN_FilterTypeDef filters_[MAX_FILTER_COUNT]; /**< Filter settings */
};
#ifdef STA_STM32_CAN_GLOBAL
/**
* @brief Global CAN instance.
*
* @ingroup stm32CAN
*/
extern STM32CanController CanBus;
/**
* @brief Interrupt handler for pending RX frames.
*
* May be implemented by application.
*
* @ingroup stm32CAN
*/
void CanBus_RxPendingCallback();
#endif // STA_STM32_CAN_GLOBAL
} // namespace sta
#endif // STA_STM32_CAN_ENABLE
#endif // STA_STM32_CAN_HPP

View File

@ -0,0 +1,99 @@
/**
* @file
* @brief Helper macros for STM32 clock queries.
*/
#ifndef STA_STM32_CLOCKS_HPP
#define STA_STM32_CLOCKS_HPP
/**
* @defgroup stm32 STM32
* @brief Modules implemented for STM32 MCUs.
*/
/**
* @defgroup stm32BuildConfig Build config
* @ingroup stm32
* @brief Build configuration options.
*/
/**
* @defgroup stm32Clocks Clocks
* @ingroup stm32
* @brief STM32 Clock queries.
* @{
*/
#include <sta/config.hpp>
#include <sta/stm32/hal.hpp>
/**
* @brief Get function returning PCLK frequency.
*
* @param n Index of peripheral clock
*/
#define STA_STM32_GET_PCLK_FREQ_FN(n) HAL_RCC_GetPCLK ## n ## Freq
/**
* @brief Internal helper for macro expansion.
*
* @param n PCLK index
* @return Function returning PCLK frequency
*/
#define _STA_STM32_GET_PCLK_FREQ_FN(n) STA_STM32_GET_PCLK_FREQ_FN(n)
/**
* @brief Map instance name to PCLK index.
*
* @param type Hardware type
* @param idx Instance index
* @return PCLK index
*/
#define _STA_STM32_PCLK_IDX_MAP(type, idx) STA_STM32_ ## type ## _ ## idx ## _PCLK_IDX
// Get HAL handle to PCLK index map macro
/**
* @brief Map instance handle to PCLK index.
*
* @param handle HAL handle
* @return PCLK index
*/
#define _STA_STM32_HANDLE_PCLK_IDX_MAP(handle) STA_STM32_ ## handle ## _PCLK_IDX
/**
* @brief Get function returning frequency of PCLK used by TIM.
*
* @param n TIM index
*/
#define STA_STM32_GET_TIM_PCLK_FREQ_FN(n) _STA_STM32_GET_PCLK_FREQ_FN(_STA_STM32_PCLK_IDX_MAP(TIM, n))
/**
* @brief Get function returning frequency of PCLK used by SPI interface.
*
* @param n SPI interface index
*/
#define STA_STM32_GET_SPI_PCLK_FREQ_FN(n) _STA_STM32_GET_PCLK_FREQ_FN(_STA_STM32_PCLK_IDX_MAP(SPI, n))
/**
* @brief Get function returning frequency of PCLK used by I2C interface.
*
* @param n I2C interface index
*/
#define STA_STM32_GET_I2C_PCLK_FREQ_FN(n) _STA_STM32_GET_PCLK_FREQ_FN(_STA_STM32_PCLK_IDX_MAP(I2C, n))
/**
* @brief Get function returning frequency of PCLK used by USART interface.
*
* @param n USART interface index
*/
#define STA_STM32_GET_USART_PCLK_FREQ_FN(n) _STA_STM32_GET_PCLK_FREQ_FN(_STA_STM32_PCLK_IDX_MAP(USART, n))
/**
* @brief Get function returning frequency of PCLK used by HAL instance.
*
* @param handle Instance handle
*/
#define STA_STM32_GET_HANDLE_PCLK_FREQ_FN(handle) _STA_STM32_GET_PCLK_FREQ_FN(_STA_STM32_HANDLE_PCLK_IDX_MAP(handle))
/** @} */
#endif // STA_STM32_CLOCKS_HPP

View File

@ -0,0 +1,68 @@
/**
* @file
* @brief Delay functions.
*/
#ifndef STA_STM32_DELAY_HPP
#define STA_STM32_DELAY_HPP
/**
* @defgroup stm32Delay Delay
* @ingroup stm32
* @brief STM32 Delay module.
*/
#ifdef DOXYGEN
/**
* @def STA_STM32_DELAY_ENABLE
* @brief Enable module.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_DELAY_ENABLE
/**
* @def STA_STM32_DELAY_US_TIM
* @brief 1 MHz TIM instance used by sta::delayUs.
*
* NOTE: TIM time base must be started before use of sta::delayUs by calling sta::initHAL.
* When using startup system task this is handled automatically.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_DELAY_US_TIM
#endif // DOXYGEN
#include <sta/config.hpp>
#ifdef STA_STM32_DELAY_ENABLE
#include <cstdint>
namespace sta
{
/**
* @brief Millisecond delay.
*
* @param ms Milliseconds
*
* @ingroup stm32Delay
*/
void delayMs(uint32_t ms);
#ifdef STA_STM32_DELAY_US_TIM
/**
* @brief Microsecond delay.
*
* @param us Microseconds
*
* @ingroup stm32Delay
*/
void delayUs(uint32_t us);
#endif // STA_STM32_DELAY_US_TIM
} // namespace sta
#endif // STA_STM32_DELAY_ENABLE
#endif // STA_STM32_DELAY_HPP

View File

@ -0,0 +1,108 @@
/**
* @file
* @brief Wrapper for STM32 GPIO pins.
*/
#ifndef STA_STM32_GPIO_PIN_HPP
#define STA_STM32_GPIO_PIN_HPP
/**
* @defgroup stm32GPIO GPIO
* @ingroup stm32
* @brief STM32 GPIO module.
*/
#ifdef DOXYGEN
/**
* @def STA_STM32_GPIO_ENABLE
* @brief Enable module.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_GPIO_ENABLE
#endif // DOXYGEN
#include <sta/config.hpp>
#ifdef STA_STM32_GPIO_ENABLE
#include <sta/intf/gpio_pin.hpp>
#include <sta/stm32/hal.hpp>
namespace sta
{
/**
* @brief Container for STM GPIO Pin data.
*
* @ingroup stm32GPIO
*/
class STM32GpioPin : public GpioPin
{
public:
/**
* @param port GPIO port
* @param pin Pin index
*/
STM32GpioPin(GPIO_TypeDef * port, uint16_t pin);
void setState(GpioPinState state) override;
/**
* @brief Get GPIO port for pin.
*
* @return GPIO port
*/
GPIO_TypeDef * getPort() const;
/**
* @brief Get pin index for pin.
*
* @return Pin index
*/
uint16_t getPin() const;
/**
* @brief Get GPIO port index for pin.
*
* @return GPIO port index
*/
uint8_t getPortIndex() const;
private:
GPIO_TypeDef * port_; /**< GPIO port */
uint16_t pin_; /**< GPIO pin */
};
/**
* @brief Interrupt trigger edge.
*/
enum class InterruptEdge
{
RISING, /**< Rising edge */
FALLING, /**< Falling edge */
BOTH /**< Rising and falling edge */
};
/**
* @brief Check pin EXIT pin configuration.
*
* @param pin GPIO pin
* @param edge Interrupt trigger edge
* @return True if EXIT pin and trigger edge matches
*/
bool isInterruptEdge(const STM32GpioPin & pin, InterruptEdge edge);
} // namespace sta
/**
* @brief Create STM32GpioPin object from pin label.
*
* @param label Pin label
*
* @ingroup stm32GPIO
*/
#define STA_STM32_GPIO_PIN(label) sta::STM32GpioPin{label##_GPIO_Port, label##_Pin}
#endif // STA_STM32_GPIO_ENABLE
#endif // STA_STM32_GPIO_PIN_HPP

View File

@ -0,0 +1,8 @@
#ifndef STA_STM32_HAL_HPP
#define STA_STM32_HAL_HPP
// Include STM32 HAL headers
#include <main.h>
#endif // STA_STM32_HAL_HPP

View File

@ -0,0 +1,20 @@
/**
* @file
* @brief Global STM32 HAL initialization.
*/
#ifndef STA_STM32_INIT_HPP
#define STA_STM32_INIT_HPP
namespace sta
{
/**
* @brief Initialize global HAL objects.
*
* @ingroup stm32
*/
void initHAL();
} // namespace sta
#endif // STA_STM32_INIT_HPP

View File

@ -0,0 +1,77 @@
/**
* @brief Configuration for STM32F411xE family.
*/
#ifndef STA_STM32_MCU_STM32F411xE_HPP
#define STA_STM32_MCU_STM32F411xE_HPP
#ifndef STM32F411xE
# error "MCU config incompatible"
#endif // !STM32F411xE
#include <sta/stm32/mcu/common.hpp>
// Peripheral clock mappings
//
// TIM to PCLK
#define STA_STM32_TIM_1_PCLK_IDX 2
#define STA_STM32_TIM_2_PCLK_IDX 1
#define STA_STM32_TIM_3_PCLK_IDX 1
#define STA_STM32_TIM_4_PCLK_IDX 1
#define STA_STM32_TIM_5_PCLK_IDX 1
#define STA_STM32_TIM_9_PCLK_IDX 2
#define STA_STM32_TIM_10_PCLK_IDX 2
#define STA_STM32_TIM_11_PCLK_IDX 2
// SPI to PCLK
#define STA_STM32_SPI_1_PCLK_IDX 2
#define STA_STM32_SPI_2_PCLK_IDX 1
#define STA_STM32_SPI_3_PCLK_IDX 1
#define STA_STM32_SPI_4_PCLK_IDX 2
#define STA_STM32_SPI_5_PCLK_IDX 2
// I2C to PCLK
#define STA_STM32_I2C_1_PCLK_IDX 1
#define STA_STM32_I2C_2_PCLK_IDX 1
#define STA_STM32_I2C_3_PCLK_IDX 1
// USART to PCLK
#define STA_STM32_USART_1_PCLK_IDX 2
#define STA_STM32_USART_2_PCLK_IDX 1
#define STA_STM32_USART_6_PCLK_IDX 2
// HAL handle mappings
//
#define STA_STM32_htim1_PCLK_IDX STA_STM32_TIM_1_PCLK_IDX
#define STA_STM32_htim2_PCLK_IDX STA_STM32_TIM_2_PCLK_IDX
#define STA_STM32_htim3_PCLK_IDX STA_STM32_TIM_3_PCLK_IDX
#define STA_STM32_htim4_PCLK_IDX STA_STM32_TIM_4_PCLK_IDX
#define STA_STM32_htim5_PCLK_IDX STA_STM32_TIM_5_PCLK_IDX
#define STA_STM32_htim9_PCLK_IDX STA_STM32_TIM_9_PCLK_IDX
#define STA_STM32_htim10_PCLK_IDX STA_STM32_TIM_10_PCLK_IDX
#define STA_STM32_htim11_PCLK_IDX STA_STM32_TIM_11_PCLK_IDX
// SPI to PCLK
#define STA_STM32_hspi1_PCLK_IDX STA_STM32_SPI_1_PCLK_IDX
#define STA_STM32_hspi2_PCLK_IDX STA_STM32_SPI_2_PCLK_IDX
#define STA_STM32_hspi3_PCLK_IDX STA_STM32_SPI_3_PCLK_IDX
#define STA_STM32_hspi4_PCLK_IDX STA_STM32_SPI_4_PCLK_IDX
#define STA_STM32_hspi5_PCLK_IDX STA_STM32_SPI_5_PCLK_IDX
// I2C to PCLK
#define STA_STM32_hi2c1_PCLK_IDX STA_STM32_I2C_1_PCLK_IDX
#define STA_STM32_hi2c2_PCLK_IDX STA_STM32_I2C_2_PCLK_IDX
#define STA_STM32_h12c3_PCLK_IDX STA_STM32_I2C_3_PCLK_IDX
// USART to PCLK
#define STA_STM32_husart1_PCLK_IDX STA_STM32_USART_1_PCLK_IDX
#define STA_STM32_husart2_PCLK_IDX STA_STM32_USART_2_PCLK_IDX
#define STA_STM32_husart6_PCLK_IDX STA_STM32_USART_6_PCLK_IDX
#endif // STA_STM32_MCU_STM32F411xE_HPP

View File

@ -0,0 +1,16 @@
/**
* @brief Configuration for STM32F413xx family.
*/
#ifndef STA_STM32_MCU_STM32F413xx_HPP
#define STA_STM32_MCU_STM32F413xx_HPP
#ifndef STM32F413xx
# error "MCU config incompatible"
#endif // !STM32F413xx
#include <sta/stm32/mcu/common.hpp>
#endif // STA_STM32_MCU_STM32F413xx_HPP

View File

@ -0,0 +1,12 @@
/**
* @brief Common configuration for STM32 MCUs
*/
#ifndef STA_STM32_MCU_COMMON_HPP
#define STA_STM32_MCU_COMMON_HPP
// TODO: Are all STM32 MCUs little endian?
#define STA_MCU_LITTLE_ENDIAN
#endif // STA_STM32_MCU_COMMON_HPP

133
include/sta/stm32/spi.hpp Normal file
View File

@ -0,0 +1,133 @@
/**
* @file
* @brief Implementations for SpiInterface and SpiDevice using STM32 HAL.
*/
#ifndef STA_STM32_SPI_HPP
#define STA_STM32_SPI_HPP
/**
* @defgroup stm32SPI SPI
* @ingroup stm32
* @brief STM32 SPI module.
*/
#ifdef DOXYGEN
/**
* @def STA_STM32_SPI_ENABLE
* @brief Enable module.
*
* Requires **STM_GPIO** module.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_SPI_ENABLE
#endif // DOXYGEN
#include <sta/config.hpp>
#ifdef STA_STM32_SPI_ENABLE
#ifndef STA_STM32_GPIO_ENABLE
#error "STM32 GPIO module required"
#endif // !STA_STM32_GPIO_ENABLE
#include <sta/spi/device.hpp>
#include <sta/spi/interface.hpp>
#include <sta/stm32/clocks.hpp>
#include <sta/stm32/gpio_pin.hpp>
namespace sta
{
/**
* @ingroup stm32SPI
* @{
*/
/**
* @brief Get peripheral clock frequency.
*
* @return Clock frequency
*/
using STM32SpiPCLKFreqFn = uint32_t (*)();
/**
* @brief Info related to STM SPI interface.
*/
struct STM32SpiInterfaceInfo
{
SPI_HandleTypeDef * handle; /**< Interface handle */
STM32SpiPCLKFreqFn getPCLKFreq; /**< Getter for peripheral clock used by interface */
};
/**
* @brief Implementation of SpiInterface interface using STM32 HAL.
*/
class STM32SpiInterface : public SpiInterface
{
public:
/**
* @param info SPI interface info
* @param mutex Mutex object for managing access. Pass nullptr for no access control
*/
STM32SpiInterface(const STM32SpiInterfaceInfo & info, Mutex * mutex = nullptr);
void transfer(uint8_t value) override;
void transfer16(uint16_t value) override;
void transfer(const uint8_t * buffer, size_t size) override;
void transfer(const uint8_t * txBuffer, uint8_t * rxBuffer, size_t size) override;
void receive(uint8_t * buffer, size_t size) override;
void fill(uint8_t value, size_t count) override;
const SpiSettings & settings() const override;
private:
STM32SpiInterfaceInfo info_; /**< SPI interface info */
};
/**
* @brief Implementation of SpiDevice interface using STM32 HAL.
*/
class STM32SpiDevice : public SpiDevice
{
public:
/**
* @param intf SPI interface
* @param csPin Device CS pin
*/
STM32SpiDevice(STM32SpiInterface * intf, STM32GpioPin csPin);
private:
STM32GpioPin csPin_; /**< Device CS pin */
};
/** @} */
} // namespace sta
/**
* @brief Get SPI interface info struct for STM32 HAL handle.
*
* Requires STA_STM32_<handle>_PCLK_IDX to be defined for the MCU.
* MCU mappings are found in `core` -> sta/mcu/.hpp files.
*
* Check the MCUs Reference Manual RCC register documentation to see which
* peripheral clock is used.
*
* @param handle SPI interface handle
*
* @ingroup halSPI
*/
#define STA_STM32_SPI_INFO(handle) sta::STM32SpiInterfaceInfo{&handle, STA_STM32_GET_HANDLE_PCLK_FREQ_FN(handle)}
#endif // STA_STM32_SPI_ENABLE
#endif // STA_STM32_SPI_HPP

View File

@ -0,0 +1,66 @@
/**
* @file
* @brief Implementation of UART using STM32 HAL.
*/
#ifndef STA_STM32_UART_HPP
#define STA_STM32_UART_HPP
/**
* @defgroup stm32UART UART
* @ingroup stm32
* @brief STM32 UART module.
*/
#ifdef DOXYGEN
/**
* @def STA_STM32_UART_ENABLE
* @brief Enable module.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_UART_ENABLE
/**
* @def STA_STM32_UART_DEBUG_SERIAL
* @brief Create global sta::DebugSerial object using this HAL UART instance.
*
* @ingroup stm32BuildConfig
*/
# define STA_STM32_UART_DEBUG_SERIAL
#endif // DOXYGEN
#include <sta/config.hpp>
#ifdef STA_STM32_UART_ENABLE
#include <sta/intf/uart.hpp>
#include <sta/stm32/hal.hpp>
namespace sta
{
/**
* @brief Implementation of UART interface using HAL.
*
* @ingroup stm32UART
*/
class STM32UART : public UART
{
public:
/**
* @param handle UART handle
*/
STM32UART(UART_HandleTypeDef * handle);
void write(const uint8_t * buffer, size_t size) override;
private:
UART_HandleTypeDef * handle_; /**< UART handle */
};
} // namespace sta
#endif // STA_STM32_UART_ENABLE
#endif // STA_STM32_UART_HPP

View File

@ -1,6 +1,6 @@
{ {
"owner" : "sta", "owner" : "sta",
"name": "sta-core", "name": "sta-core",
"version": "0.1.0", "version": "1.0.0",
"dependencies": [] "dependencies": []
} }

210
src/stm32/can.cpp Normal file
View File

@ -0,0 +1,210 @@
#include <sta/stm32/can.hpp>
#ifdef STA_STM32_CAN_ENABLE
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
STM32CanController::STM32CanController(CAN_HandleTypeDef * handle)
: handle_{handle}
{
initFilters();
}
void STM32CanController::enableRxInterrupts()
{
HAL_CAN_ActivateNotification(handle_,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO1_MSG_PENDING
);
}
void STM32CanController::start()
{
HAL_CAN_Start(handle_);
}
void STM32CanController::stop()
{
HAL_CAN_Stop(handle_);
}
bool STM32CanController::sendFrame(const CanTxHeader & header, const uint8_t * payload)
{
STA_ASSERT_MSG(header.payloadLength <= 8, "CAN 2.0B payload size exceeded");
CAN_TxHeaderTypeDef halHeader;
if (header.id.format == CanIdFormat::STD)
{
halHeader.StdId = header.id.sid & 0x7FF;
halHeader.IDE = CAN_ID_STD;
}
else
{
// Combine SID and EID
halHeader.ExtId = ((header.id.sid & 0x7FF) << 18) | (header.id.eid & 0x3FFFF);
halHeader.IDE = CAN_ID_EXT;
}
halHeader.DLC = header.payloadLength;
uint32_t mailbox; // Don't care
return (HAL_OK == HAL_CAN_AddTxMessage(handle_, &halHeader, const_cast<uint8_t *>(payload), &mailbox));
}
bool STM32CanController::receiveFrame(uint8_t fifo, CanRxHeader * header, uint8_t * payload)
{
// Check if message is available
if (HAL_CAN_GetRxFifoFillLevel(handle_, fifo) == 0)
return false;
// Retrieve message
CAN_RxHeaderTypeDef halHeader;
HAL_CAN_GetRxMessage(handle_, fifo, &halHeader, payload);
if (halHeader.IDE == CAN_ID_STD)
{
header->id.format = CanIdFormat::STD;
header->id.sid = halHeader.StdId;
header->id.eid = 0;
}
else
{
header->id.format = CanIdFormat::EXT;
// Separate SID and EID
header->id.sid = (halHeader.ExtId >> 18);
header->id.eid = halHeader.ExtId & 0x3FFFF;
}
// No conversion required for CAN 2B standard
header->payloadLength = halHeader.DLC;
header->timestamp = halHeader.Timestamp;
header->filter = halHeader.FilterMatchIndex;
return true;
}
uint32_t STM32CanController::getRxFifoFlags()
{
//
return (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO0) != 0)
| (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO1) != 0) << 1;
}
void STM32CanController::configureFilter(uint8_t idx, const CanFilter & filter, bool active /* = false */)
{
CAN_FilterTypeDef * config = &filters_[idx];
if (filter.type == CanFilterIdFormat::STD)
{
config->FilterIdHigh = 0;
config->FilterIdLow = filter.obj.sid & 0x7FF;
config->FilterMaskIdHigh = 0;
config->FilterMaskIdLow = filter.mask.sid & 0x7FF;
}
else
{
config->FilterIdHigh = ((filter.obj.sid & 0x7FF) << 2) | ((filter.obj.eid >> 16) & 0x3);
config->FilterIdLow = filter.obj.eid & 0xFFFF;
config->FilterMaskIdHigh = ((filter.mask.sid & 0x7FF) << 2) | ((filter.mask.eid >> 16) & 0x3);
config->FilterMaskIdLow = filter.mask.eid & 0xFFFF;
}
config->FilterFIFOAssignment = filter.fifo;
config->FilterActivation = (active ? CAN_FILTER_ENABLE : CAN_FILTER_DISABLE);
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::enableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_ENABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::disableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::clearFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
// Only disable active filters
if (config->FilterActivation == CAN_FILTER_ENABLE)
{
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
}
}
void STM32CanController::initFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
config->FilterBank = i;
config->FilterMode = CAN_FILTERMODE_IDMASK;
config->FilterScale = CAN_FILTERSCALE_32BIT;
config->FilterActivation = CAN_FILTER_DISABLE;
config->SlaveStartFilterBank = MAX_FILTER_COUNT;
}
}
} // namespace sta
#ifdef STA_STM32_CAN_GLOBAL
#include <can.h>
namespace sta
{
STM32CanController CanBus(&STA_STM32_CAN_GLOBAL);
STA_WEAK
void CanBus_RxPendingCallback()
{}
} // namespace sta
extern "C"
{
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
}
#endif // STA_STM32_CAN_GLOBAL
#endif // STA_STM32_CAN_ENABLE

71
src/stm32/delay.cpp Normal file
View File

@ -0,0 +1,71 @@
#include <sta/stm32/delay.hpp>
#ifdef STA_STM32_DELAY_ENABLE
#include <sta/stm32/hal.hpp>
#include <sta/stm32/clocks.hpp>
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
void delayMs(uint32_t ms)
{
HAL_Delay(ms);
}
} // namespace sta
#ifdef STA_STM32_DELAY_US_TIM
#include <tim.h>
namespace sta
{
uint32_t gDelayUsMul = 1;
void delayUs(uint32_t us)
{
__HAL_TIM_SET_COUNTER(&STA_STM32_DELAY_US_TIM, 0);
while (__HAL_TIM_GET_COUNTER(&STA_STM32_DELAY_US_TIM) < us * gDelayUsMul);
}
bool isValidDelayUsTIM()
{
// Get PCLK multiplier for TIM clock
uint32_t pclkMul = 1;
switch (STA_STM32_DELAY_US_TIM.Init.ClockDivision)
{
case TIM_CLOCKDIVISION_DIV1:
pclkMul = 1;
break;
case TIM_CLOCKDIVISION_DIV2:
pclkMul = 2;
break;
case TIM_CLOCKDIVISION_DIV4:
pclkMul = 4;
break;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
// Calculate TIM clock frequency
uint32_t clkFreq = pclkMul * STA_STM32_GET_HANDLE_PCLK_FREQ_FN(STA_STM32_DELAY_US_TIM)();
// Calculate update frequency based on prescaler value
uint32_t prescaler = (STA_STM32_DELAY_US_TIM.Init.Prescaler) ? STA_STM32_DELAY_US_TIM.Init.Prescaler : 1;
uint32_t updateFreq = clkFreq / prescaler;
gDelayUsMul = updateFreq / 1000000;
// TIM must have at least microsecond precision (>= 1 MHz frequency)
return (updateFreq >= 1000000);
}
} // namespace sta
#endif // STA_STM32_DELAY_US_TIM
#endif // STA_STM32_DELAY_ENABLE

83
src/stm32/gpio_pin.cpp Normal file
View File

@ -0,0 +1,83 @@
#include <sta/stm32/gpio_pin.hpp>
#ifdef STA_STM32_GPIO_ENABLE
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
STM32GpioPin::STM32GpioPin(GPIO_TypeDef * port, uint16_t pin)
: port_{port}, pin_{pin}
{
STA_ASSERT(port != nullptr);
}
void STM32GpioPin::setState(GpioPinState state)
{
HAL_GPIO_WritePin(port_, pin_, (state == GpioPinState::LOW) ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
GPIO_TypeDef * STM32GpioPin::getPort() const
{
return port_;
}
uint16_t STM32GpioPin::getPin() const
{
return pin_;
}
uint8_t STM32GpioPin::getPortIndex() const
{
return GPIO_GET_INDEX(port_);
}
bool isInterruptEdge(const STM32GpioPin & gpioPin, InterruptEdge edge)
{
uint32_t pin = gpioPin.getPin();
for (uint32_t i = 0; i < 8 * sizeof(pin); ++i)
{
uint32_t ioPos = 1U << i;
if (pin & ioPos)
{
// Check input mode
uint32_t mode = (gpioPin.getPort()->MODER >> (2U * i)) & GPIO_MODE;
if (mode != MODE_INPUT)
{
return false;
}
// Is EXTI configured?
if (EXTI->IMR & ioPos)
{
bool rising = (EXTI->RTSR & ioPos);
bool falling = (EXTI->FTSR & ioPos);
switch (edge)
{
case InterruptEdge::RISING:
return rising;
case InterruptEdge::FALLING:
return falling;
case InterruptEdge::BOTH:
return rising && falling;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
}
}
}
return false;
}
} // namespace sta
#endif // STA_STM32_GPIO_ENABLE

22
src/stm32/init.cpp Normal file
View File

@ -0,0 +1,22 @@
#include <sta/stm32/init.hpp>
#include <sta/assert.hpp>
#ifdef STA_STM32_DELAY_US_TIM
#include <tim.h>
#endif // STA_STM32_DELAY_US_TIM
namespace sta
{
void initHAL()
{
#ifdef STA_STM32_DELAY_US_TIM
// Validate TIM used for delayUs
extern bool isValidDelayUsTIM();
STA_ASSERT(isValidDelayUsTIM());
// Start timer base
HAL_TIM_Base_Start(&STA_STM32_DELAY_US_TIM);
#endif // STA_STM32_DELAY_US_TIM
}
} // namespace sta

181
src/stm32/spi.cpp Normal file
View File

@ -0,0 +1,181 @@
#include <sta/stm32/spi.hpp>
#ifdef STA_STM32_SPI_ENABLE
#include <sta/assert.hpp>
#include <sta/endian.hpp>
#include <sta/lang.hpp>
#ifdef STA_MCU_LITTLE_ENDIAN
# define STA_STM32_SPI_REVERSE_BIT_ORDER SpiBitOrder::MSB
#elif STA_MCU_BIG_ENDIAN
# define STA_STM32_SPI_REVERSE_BIT_ORDER SpiBitOrder::LSB
#else // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
# ifdef STA_STM32_SPI_REVERSE_BIT_ORDER
# warning "Internal STA_STM32_SPI_REVERSE_BIT_ORDER macro manually defined! Better now what you are doing!!!"
# else // !STA_STM32_SPI_REVERSE_BIT_ORDER
# error "Unknown endian-ness. Define STA_MCU_LITTLE_ENDIAN or STA_MCU_BIG_ENDIAN in <sta/config.hpp>"
# endif // !STA_STM32_SPI_REVERSE_BIT_ORDER
#endif // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
namespace sta
{
static SpiSettings getSpiSettings(SPI_HandleTypeDef * handle, uint32_t pclkFreq)
{
SpiSettings settings;
settings.mode = getSpiMode(
(handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? SpiClkPolarity::LOW : SpiClkPolarity::HIGH,
(handle->Init.CLKPhase == SPI_PHASE_1EDGE) ? SpiClkPhase::EDGE_1 : SpiClkPhase::EDGE_2
);
settings.dataSize = (handle->Init.DataSize == SPI_DATASIZE_8BIT) ? SpiDataSize::SIZE_8 : SpiDataSize::SIZE_16;
settings.bitOrder = (handle->Init.FirstBit == SPI_FIRSTBIT_MSB) ? SpiBitOrder::MSB : SpiBitOrder::LSB;
uint32_t prescaler = 1;
switch (handle->Init.BaudRatePrescaler)
{
case SPI_BAUDRATEPRESCALER_2:
prescaler = 2;
break;
case SPI_BAUDRATEPRESCALER_4:
prescaler = 4;
break;
case SPI_BAUDRATEPRESCALER_8:
prescaler = 8;
break;
case SPI_BAUDRATEPRESCALER_16:
prescaler = 16;
break;
case SPI_BAUDRATEPRESCALER_32:
prescaler = 32;
break;
case SPI_BAUDRATEPRESCALER_64:
prescaler = 64;
break;
case SPI_BAUDRATEPRESCALER_128:
prescaler = 128;
break;
case SPI_BAUDRATEPRESCALER_256:
prescaler = 256;
break;
default:
// Unreachable case
STA_ASSERT_MSG(false, "Case for SPI_BAUDRATEPRESCALER not handled");
STA_UNREACHABLE();
}
// SPI clock speed is based of PCLK
settings.clkSpeed = pclkFreq / prescaler;
return settings;
}
STM32SpiInterface::STM32SpiInterface(const STM32SpiInterfaceInfo & info, Mutex * mutex /* = nullptr */)
: SpiInterface(mutex), info_{info}
{
STA_ASSERT(info.handle != nullptr);
STA_ASSERT(info.getPCLKFreq != nullptr);
}
void STM32SpiInterface::transfer(uint8_t value)
{
if (settings().dataSize == SpiDataSize::SIZE_8)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
void STM32SpiInterface::transfer16(uint16_t value)
{
uint16_t size = 1;
// Send as two bytes if data size is 8-bit
if (settings().dataSize == SpiDataSize::SIZE_8)
{
size = 2;
if (settings().bitOrder == STA_STM32_SPI_REVERSE_BIT_ORDER)
{
// Reverse byte order from internal representation
value = STA_UINT16_SWAP_BYTE_ORDER(value);
}
}
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&value), size, HAL_MAX_DELAY);
}
void STM32SpiInterface::transfer(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_Transmit(info_.handle, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
void STM32SpiInterface::transfer(const uint8_t * txBuffer, uint8_t * rxBuffer, size_t size)
{
STA_ASSERT(txBuffer != nullptr);
STA_ASSERT(rxBuffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_TransmitReceive(info_.handle, const_cast<uint8_t *>(txBuffer), rxBuffer, size, HAL_MAX_DELAY);
}
void STM32SpiInterface::receive(uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_SPI_Receive(info_.handle, buffer, size, HAL_MAX_DELAY);
}
void STM32SpiInterface::fill(uint8_t value, size_t count)
{
STA_ASSERT(count != 0);
if (settings().dataSize == SpiDataSize::SIZE_8)
{
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
}
const SpiSettings & STM32SpiInterface::settings() const
{
// Cache settings
static SpiSettings settings = getSpiSettings(info_.handle, info_.getPCLKFreq());
return settings;
}
STM32SpiDevice::STM32SpiDevice(STM32SpiInterface * intf, STM32GpioPin csPin)
: SpiDevice(intf, &csPin_), csPin_{csPin}
{}
} // namespace sta
#endif // STA_HAL_SPI_ENABLE

43
src/stm32/uart.cpp Normal file
View File

@ -0,0 +1,43 @@
#include <sta/stm32/uart.hpp>
#ifdef STA_STM32_UART_ENABLE
#include <sta/assert.hpp>
namespace sta
{
STM32UART::STM32UART(UART_HandleTypeDef * handle)
: handle_{handle}
{
STA_ASSERT(handle != nullptr);
}
void STM32UART::write(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_UART_Transmit(handle_, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
} // namespace sta
#ifdef STA_STM32_UART_DEBUG_SERIAL
// Get extern declaration for DebugSerial because const namespace level variables have internal linkage by default
#include <sta/debug_serial.hpp>
#include <usart.h>
namespace sta
{
STM32UART gStm32DebugSerial(&STA_STM32_UART_DEBUG_SERIAL);
// Used by <sta/debug.hpp>
PrintableUART DebugSerial(&gStm32DebugSerial);
} // namespace sta
#endif // STA_STM32_UART_DEBUG_SERIAL
#endif // STA_STM32_UART_ENABLE