Added attitude determination

This commit is contained in:
dario 2024-06-18 01:05:08 +02:00
parent 570685b0bb
commit dec530a7df
6 changed files with 301 additions and 99 deletions

View File

@ -0,0 +1,37 @@
/*
* integrate.hpp
*
* Created on: Jun 17, 2024
* Author: Dario
*/
#ifndef STA_MATHS_ATTITUDE_INTEGRATE_HPP
#define STA_MATHS_ATTITUDE_INTEGRATE_HPP
#include <sta/math/quaternion.hpp>
#include <sta/time.hpp>
namespace sta
{
namespace math
{
class AttitudeModel
{
public:
AttitudeModel(Quaternion state, float alpha = 1.0f);
Quaternion update(float dt, float ox, float oy, float oz);
Quaternion update(float ox, float oy, float oz);
Quaternion getAttitude();
private:
Quaternion state_;
float alpha_;
float time_;
};
} // namespace math
} // namespace sta
#endif // STA_MATHS_ATTITUDE_INTEGRATE_HPP

View File

@ -11,68 +11,68 @@
namespace sta
{
namespace math
{
namespace math
{
/**
* @class DynamicKalmanFilter
* @brief Represents a Kalman filter with dynamic time interval between steps.
*/
class DynamicKalmanFilter
{
private:
matrix A_; ///< The interval time independent part of state transition matrix.
matrix TA_; ///< The time interval matrix for the state transition matrix.
matrix B_; ///< The control input matrix.
matrix H_; ///< The observation matrix.
matrix Q_; ///< The interval time independent part of the process noise covariance matrix.
matrix TQ_; ///< The time interval matrix for the process noise covariance matrix.
matrix R_; ///< The measurement noise covariance matrix.
uint8_t n_; ///< The dimension of the state vector.
matrix identity_; ///< The identity matrix with size of the state vector.
/**
* @class DynamicKalmanFilter
* @brief Represents a Kalman filter with dynamic time interval between steps.
*/
class DynamicKalmanFilter
{
private:
matrix A_; ///< The interval time independent part of state transition matrix.
matrix TA_; ///< The time interval matrix for the state transition matrix.
matrix B_; ///< The control input matrix.
matrix H_; ///< The observation matrix.
matrix Q_; ///< The interval time independent part of the process noise covariance matrix.
matrix TQ_; ///< The time interval matrix for the process noise covariance matrix.
matrix R_; ///< The measurement noise covariance matrix.
uint8_t n_; ///< The dimension of the state vector.
matrix identity_; ///< The identity matrix with size of the state vector.
public:
/**
* @brief Constructs a DynamicKalmanFilter object. The time interval will be dynamic. The state transition matrix will be build from A, T and the time interval dt during the prediction step.
* Where F(i,j) = A(i,j) + dt^T(i,j).
* @param A The interval time independent part of state transition matrix.
* @param TA The time interval matrix for the state transition matrix.
* @param B The control input matrix.
* @param H The observation matrix.
* @param Q The process noise covariance matrix.
* @param TQ The time interval matrix for the process noise covariance matrix.
* @param R The measurement noise covariance matrix.
*/
DynamicKalmanFilter(matrix A, matrix TA, matrix B, matrix H, matrix Q, matrix TQ, matrix R);
public:
/**
* @brief Constructs a DynamicKalmanFilter object. The time interval will be dynamic. The state transition matrix will be build from A, T and the time interval dt during the prediction step.
* Where F(i,j) = A(i,j) + dt^T(i,j).
* @param A The interval time independent part of state transition matrix.
* @param TA The time interval matrix for the state transition matrix.
* @param B The control input matrix.
* @param H The observation matrix.
* @param Q The process noise covariance matrix.
* @param TQ The time interval matrix for the process noise covariance matrix.
* @param R The measurement noise covariance matrix.
*/
DynamicKalmanFilter(matrix A, matrix TA, matrix B, matrix H, matrix Q, matrix TQ, matrix R);
/**
* @brief Destroys the DynamicKalmanFilter object.
*/
~DynamicKalmanFilter();
/**
* @brief Destroys the DynamicKalmanFilter object.
*/
~DynamicKalmanFilter();
/**
* @brief Predicts the next state of the Kalman filter, based on the current state and a control input and the time interval between the current and the next step.
* The state transition matrix is build from A, T and the time interval dt.
* Where F(i,j) = A(i,j) + dt^T(i,j).
* @param dt The time interval between the current and the next step.
* @param state The current state and error convariance matrix.
* @param u The control input.
* @return The predicted state of the Kalman filter.
*/
KalmanState predict(float dt , KalmanState state, matrix u);
/**
* @brief Predicts the next state of the Kalman filter, based on the current state and a control input and the time interval between the current and the next step.
* The state transition matrix is build from A, T and the time interval dt.
* Where F(i,j) = A(i,j) + dt^T(i,j).
* @param dt The time interval between the current and the next step.
* @param state The current state and error convariance matrix.
* @param u The control input.
* @return The predicted state of the Kalman filter.
*/
KalmanState predict(float dt , KalmanState state, matrix u);
/**
* @brief Corrects the state of the Kalman filter based on a measurement.
* @param state The current state and error convariance matrix.
* @param z The observed measurement.
* @return The corrected state of the Kalman filter.
*/
KalmanState correct(KalmanState state, matrix z);
};
} // namespace math
/**
* @brief Corrects the state of the Kalman filter based on a measurement.
* @param state The current state and error convariance matrix.
* @param z The observed measurement.
* @return The corrected state of the Kalman filter.
*/
KalmanState correct(KalmanState state, matrix z);
};
} // namespace math
} // namespace sta

View File

@ -5,62 +5,60 @@
namespace sta
{
namespace math
{
struct matrix
{
namespace math
{
float * datafield = nullptr;
uint8_t * shape = nullptr;
struct matrix
{
matrix();
matrix(const matrix&);
matrix(uint8_t, uint8_t);
matrix(uint8_t, uint8_t, float*);
~matrix();
float * datafield = nullptr;
uint8_t * shape = nullptr;
bool is_valid();
matrix();
matrix(const matrix&);
matrix(uint8_t, uint8_t);
matrix(uint8_t, uint8_t, float*);
~matrix();
uint16_t get_size();
uint8_t get_rows();
uint8_t get_cols();
bool is_valid();
matrix clone();
void show_serial();
void show_shape();
uint16_t get_size();
uint8_t get_rows();
uint8_t get_cols();
matrix& operator=(matrix);
void reshape(uint8_t, uint8_t);
float det();
matrix get_block(uint8_t, uint8_t, uint8_t, uint8_t);
void set_block(uint8_t, uint8_t, matrix);
void set(uint8_t, uint8_t, float);
void set(uint16_t, float);
matrix get_submatrix(uint8_t, uint8_t);
matrix clone();
void show_serial();
void show_shape();
static matrix eye(uint8_t);
static matrix zeros(uint8_t, uint8_t);
static matrix full(uint8_t, uint8_t, float);
float operator()(uint8_t, uint8_t);
float operator[](uint16_t);
uint16_t get_idx(uint8_t, uint8_t);
matrix& operator=(matrix);
void reshape(uint8_t, uint8_t);
matrix T();
matrix flatten();
float minor(uint8_t, uint8_t);
float det();
matrix get_block(uint8_t, uint8_t, uint8_t, uint8_t);
void set_block(uint8_t, uint8_t, matrix);
void set(uint8_t, uint8_t, float);
void set(uint16_t, float);
matrix get_submatrix(uint8_t, uint8_t);
matrix operator*(float);
matrix operator*(matrix);
matrix operator+(matrix);
matrix operator-(matrix);
static matrix eye(uint8_t);
static matrix zeros(uint8_t, uint8_t);
static matrix full(uint8_t, uint8_t, float);
};
float operator()(uint8_t, uint8_t);
float operator[](uint16_t);
uint16_t get_idx(uint8_t, uint8_t);
} // namespace math
matrix T();
matrix flatten();
float minor(uint8_t, uint8_t);
matrix operator*(float);
matrix operator*(matrix);
matrix operator+(matrix);
matrix operator-(matrix);
};
} // namespace math
} // namespace sta
#endif /* INC_MATRIX_HPP_ */

View File

@ -0,0 +1,35 @@
/*
* quaternion.hpp
*
* Created on: Jun 17, 2024
* Author: Dario
*/
#ifndef STA_PEAK_QUATERNION_HPP
#define STA_PEAK_QUATERNION_HPP
namespace sta
{
namespace math {
class Quaternion
{
public:
Quaternion(float w, float x, float y, float z);
Quaternion();
static Quaternion unit();
float norm();
Quaternion normalized();
Quaternion operator+(const Quaternion& quat);
Quaternion operator*(float scalar);
public:
float x, y, z, w;
};
} // namespace math
} // namespace sta
#endif /* STA_PEAK_QUATERNION_HPP */

View File

@ -0,0 +1,75 @@
/*
* integrate.cpp
*
* Created on: Jun 17, 2024
* Author: Dario
*/
#include <sta/math/algorithms/attitude/integrate.hpp>
#include <sta/math/linalg/matrix.hpp>
#include <math.h>
namespace sta
{
namespace math
{
AttitudeModel::AttitudeModel(Quaternion state, float alpha /* = 1.0f */)
: state_{state},
alpha_{alpha},
time_{sta::timeUs() / 1000000.0f}
{
}
Quaternion AttitudeModel::update(float dt, float ox, float oy, float oz)
{
if (dt < 0.0000001)
return state_;
time_ += dt;
ox *= (M_PI / 180.0f);
oy *= (M_PI / 180.0f);
oz *= (M_PI / 180.0f);
float norm = sqrt(fmax(ox*ox + oy*oy + oz*oz, 0.000001));
float dt2 = dt / 2;
float cosDt2 = cos(norm * dt2);
float sinDt2 = 1/norm * sin(norm * dt2);
float mat[16] = {
cosDt2, -sinDt2*ox, -sinDt2*oy, -sinDt2*oz,
sinDt2*ox, cosDt2, sinDt2*oz, -sinDt2*oy,
sinDt2*oy, -sinDt2*oz, cosDt2, sinDt2*ox,
sinDt2*oz, sinDt2*oy, -sinDt2*ox, cosDt2
};
matrix F(4, 4, mat);
float quat[4] = {
state_.w, state_.x, state_.y, state_.z
};
matrix qold(4, 1, quat);
matrix qnew = F * qold;
state_ = Quaternion(qnew[0], qnew[1], qnew[2], qnew[3]).normalized();
return state_;
}
Quaternion AttitudeModel::update(float ox, float oy, float oz)
{
return update(timeUs() / 1000000.0f - time_, ox, oy, oz);
}
Quaternion AttitudeModel::getAttitude()
{
return state_;
}
} // namespace math
} // namespace sta

57
src/quaternion.cpp Normal file
View File

@ -0,0 +1,57 @@
/*
* quaternion.cpp
*
* Created on: Jun 17, 2024
* Author: Dario
*/
#include <sta/math/quaternion.hpp>
#include <math.h>
namespace sta
{
namespace math
{
Quaternion::Quaternion(float w, float x, float y, float z)
: x{x}, y{y}, z{z}, w{w}
{
}
Quaternion::Quaternion()
: x{0}, y{0}, z{0}, w{1}
{
}
Quaternion Quaternion::unit()
{
return Quaternion();
}
float Quaternion::norm()
{
return sqrtf(x*x + y*y + z*z + w*w);
}
Quaternion Quaternion::normalized()
{
float n = norm();
return Quaternion(w / n, x / n, y / n, z / n);
}
Quaternion Quaternion::operator+(const Quaternion& quat)
{
return Quaternion(x + quat.x, y + quat.y, z + quat.z, w + quat.w);
}
Quaternion Quaternion::operator*(float scalar)
{
return Quaternion(x * scalar, y * scalar, z * scalar, w * scalar);
}
} // namespace math
} // namespace sta