Add matrix and kf code

This commit is contained in:
Milo Priegnitz
2024-05-24 17:32:02 +02:00
parent 78ed2e4eab
commit 290c48bfb1
10 changed files with 1013 additions and 2 deletions

View File

@@ -0,0 +1,46 @@
#include <sta/math/algorithms/kalmanFilter.hpp>
#include <sta/math/linalg/linalg.hpp>
#include <sta/debug/debug.hpp>
#include <sta/debug/assert.hpp>
namespace math
{
KalmanFilter::KalmanFilter(matrix A, matrix B, matrix C, matrix Q, matrix R) : A_{A}, B_{B}, C_{C}, Q_{Q}, R_{R}, n_{A.get_cols()}
{
STA_ASSERT_MSG(A.get_rows() == B.get_rows(), "#rows mismatch: A, B!");
STA_ASSERT_MSG(A.get_rows() == C.get_rows(), "#rows mismatch: A, C!");
STA_ASSERT_MSG(A.get_rows() == Q.get_rows(), "#rows mismatch: A, Q!");
STA_ASSERT_MSG(A.get_cols() == Q.get_rows(), "Q not square!");
STA_ASSERT_MSG(C.get_rows() == R.get_rows(), "#rows mismatch: C, R");
STA_ASSERT_MSG(R.get_cols() == R.get_rows(), "R not square!");
identity_ = matrix::eye(n_);
}
KalmanFilter::~KalmanFilter()
{
// Destructor implementation
}
KalmanState KalmanFilter::predict(float dt, KalmanState state, matrix u)
{
// Predict step implementation
// Update the state based on the system dynamics
state.x = A_ * state.x + B_ * u;
// Update the error covariance matrix
state.error = A_ * state.error * A_.T() + Q_;
return state;
}
KalmanState KalmanFilter::correct(float dt, KalmanState state, matrix z)
{
// Correct step implementation
// Calculate the Kalman gain
matrix K = state.error * C_.T() * linalg::inv(C_ * state.error * C_.T() + R_);
// Update the state based on the measurement
state.x = state.x + K * (z - C_ * state.x); //TODO check transpose
// Update the error covariance matrix
state.error = (identity_ - K * C_) * state.error;
return state;
}
}