Merge io_interfaces repo into helpers

This commit is contained in:
Henrik Stickann
2022-05-02 13:20:25 +02:00
24 changed files with 1726 additions and 4 deletions

23
src/atomic/mutex.cpp Normal file
View File

@@ -0,0 +1,23 @@
#include <sta/atomic/mutex.hpp>
#ifdef STA_ATOMIC_ENABLE
namespace sta
{
AtomicMutex::AtomicMutex()
: lock_{ATOMIC_FLAG_INIT}
{}
void AtomicMutex::acquire()
{
while (lock_.test_and_set());
}
void AtomicMutex::release()
{
lock_.clear();
}
} // namespace sta
#endif // STA_ATOMIC_ENABLE

33
src/atomic/signal.cpp Normal file
View File

@@ -0,0 +1,33 @@
#include <sta/atomic/signal.hpp>
#ifdef STA_ATOMIC_ENABLE
namespace sta
{
AtomicSignal::AtomicSignal()
: signal_{false}
{}
void AtomicSignal::notify()
{
signal_.store(true);
}
bool AtomicSignal::peek()
{
return signal_.load();
}
bool AtomicSignal::test()
{
return signal_.exchange(false);
}
void AtomicSignal::wait()
{
while (!signal_.exchange(false));
}
} // namespace sta
#endif // STA_ATOMIC_ENABLE

38
src/hal/gpio_pin.cpp Normal file
View File

@@ -0,0 +1,38 @@
#include <sta/hal/gpio_pin.hpp>
#ifdef STA_HAL_GPIO_ENABLE
#include <sta/assert.hpp>
namespace sta
{
HalGpioPin::HalGpioPin(GPIO_TypeDef * port, uint16_t pin)
: port_{port}, pin_{pin}
{
STA_ASSERT(port != nullptr);
}
void HalGpioPin::setState(GpioPinState state)
{
HAL_GPIO_WritePin(port_, pin_, (state == GpioPinState::LOW) ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
GPIO_TypeDef * HalGpioPin::getPort() const
{
return port_;
}
uint16_t HalGpioPin::getPin() const
{
return pin_;
}
uint8_t HalGpioPin::getIndex() const
{
return GPIO_GET_INDEX(port_);
}
} // namespace sta
#endif // STA_HAL_GPIO_ENABLE

194
src/hal/spi.cpp Normal file
View File

@@ -0,0 +1,194 @@
#include <sta/hal/spi.hpp>
#ifdef STA_HAL_SPI_ENABLE
#include <sta/assert.hpp>
#include <sta/endian.hpp>
#include <sta/lang.hpp>
#ifdef STA_MCU_LITTLE_ENDIAN
# define STA_HAL_SPI_REVERSE_BIT_ORDER SpiBitOrder::MSB
#elif STA_MCU_BIG_ENDIAN
# define STA_HAL_SPI_REVERSE_BIT_ORDER SpiBitOrder::LSB
#else // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
# ifdef STA_HAL_SPI_REVERSE_BIT_ORDER
# warning "Internal STA_HAL_SPI_REVERSE_BIT_ORDER macro manually defined! Better now what you are doing!!!"
# else // !STA_HAL_SPI_REVERSE_BIT_ORDER
# error "Unknown endian-ness. Define STA_MCU_LITTLE_ENDIAN or STA_MCU_BIG_ENDIAN in <sta/config.hpp>"
# endif // !STA_HAL_SPI_REVERSE_BIT_ORDER
#endif // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
namespace sta
{
static SpiSettings getHalSpiSettings(SPI_HandleTypeDef * handle, uint32_t pclkFreq)
{
SpiSettings settings;
settings.mode = getSpiMode(
(handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? SpiClkPolarity::LOW : SpiClkPolarity::HIGH,
(handle->Init.CLKPhase == SPI_PHASE_1EDGE) ? SpiClkPhase::EDGE_1 : SpiClkPhase::EDGE_2
);
settings.dataSize = (handle->Init.DataSize == SPI_DATASIZE_8BIT) ? SpiDataSize::SIZE_8 : SpiDataSize::SIZE_16;
settings.bitOrder = (handle->Init.FirstBit == SPI_FIRSTBIT_MSB) ? SpiBitOrder::MSB : SpiBitOrder::LSB;
uint32_t prescaler = 1;
switch (handle->Init.BaudRatePrescaler)
{
case SPI_BAUDRATEPRESCALER_2:
prescaler = 2;
break;
case SPI_BAUDRATEPRESCALER_4:
prescaler = 4;
break;
case SPI_BAUDRATEPRESCALER_8:
prescaler = 8;
break;
case SPI_BAUDRATEPRESCALER_16:
prescaler = 16;
break;
case SPI_BAUDRATEPRESCALER_32:
prescaler = 32;
break;
case SPI_BAUDRATEPRESCALER_64:
prescaler = 64;
break;
case SPI_BAUDRATEPRESCALER_128:
prescaler = 128;
break;
case SPI_BAUDRATEPRESCALER_256:
prescaler = 256;
break;
default:
// Unreachable case
STA_ASSERT_MSG(false, "Case for SPI_BAUDRATEPRESCALER not handled");
STA_UNREACHABLE();
}
// SPI clock speed is based of PCLK
settings.clkSpeed = pclkFreq / prescaler;
return settings;
}
HalSpiInterface::HalSpiInterface(const HalSpiInterfaceInfo & info, Mutex * mutex /* = nullptr */)
: SpiInterface(mutex), info_{info}
{
STA_ASSERT(info.handle != nullptr);
STA_ASSERT(info.getPCLKFreq != nullptr);
}
void HalSpiInterface::transfer(uint8_t value)
{
if (settings().dataSize == SpiDataSize::SIZE_8)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
void HalSpiInterface::transfer16(uint16_t value)
{
static_assert(sizeof(value) == 2, "Unexpected uint16_t size");
uint16_t size = 1;
// Send as two bytes if data size is 8-bit
if (settings().dataSize == SpiDataSize::SIZE_8)
{
size = 2;
if (settings().bitOrder == STA_HAL_SPI_REVERSE_BIT_ORDER)
{
// Reverse byte order from internal representation
value = STA_UINT16_SWAP_BYTE_ORDER(value);
}
}
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&value), size, HAL_MAX_DELAY);
}
void HalSpiInterface::transfer(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_Transmit(info_.handle, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
void HalSpiInterface::transfer(const uint8_t * txBuffer, uint8_t * rxBuffer, size_t size)
{
STA_ASSERT(txBuffer != nullptr);
STA_ASSERT(rxBuffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_TransmitReceive(info_.handle, const_cast<uint8_t *>(txBuffer), rxBuffer, size, HAL_MAX_DELAY);
}
void HalSpiInterface::receive(uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_SPI_Receive(info_.handle, buffer, size, HAL_MAX_DELAY);
}
void HalSpiInterface::fill(uint8_t value, size_t count)
{
STA_ASSERT(count != 0);
if (settings().dataSize == SpiDataSize::SIZE_8)
{
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
}
const SpiSettings & HalSpiInterface::settings() const
{
// Cache settings
static SpiSettings settings = getHalSpiSettings(info_.handle, info_.getPCLKFreq());
return settings;
}
HalSpiDevice::HalSpiDevice(SpiInterface * intf, HalGpioPin csPin)
: SpiDevice(intf), csPin_{csPin}
{}
void HalSpiDevice::select()
{
csPin_.setState(GpioPinState::LOW);
}
void HalSpiDevice::deselect()
{
csPin_.setState(GpioPinState::HIGH);
}
} // namespace sta
#endif // STA_HAL_SPI_ENABLE

44
src/hal/uart.cpp Normal file
View File

@@ -0,0 +1,44 @@
#include <sta/hal/uart.hpp>
#ifdef STA_HAL_UART_ENABLE
#include <sta/assert.hpp>
namespace sta
{
HalUART::HalUART(UART_HandleTypeDef * handle)
: handle_{handle}
{
STA_ASSERT(handle != nullptr);
}
void HalUART::write(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_UART_Transmit(handle_, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
} // namespace sta
#ifdef STA_HAL_UART_DEBUG_SERIAL
// Get extern declaration for DebugSerial because const namespace level variables have internal linkage by default
#include <sta/debug_serial.hpp>
#include <usart.h>
namespace sta
{
HalUART gHalDebugSerial(&STA_HAL_UART_DEBUG_SERIAL);
// Used by <sta/debug.hpp>
UART * const DebugSerial = &gHalDebugSerial;
} // namespace sta
#endif // STA_HAL_UART_DEBUG_SERIAL
#endif // STA_HAL_UART_ENABLE

20
src/mutex.cpp Normal file
View File

@@ -0,0 +1,20 @@
#include <sta/mutex.hpp>
namespace sta
{
/**
* @brief Dummy mutex implementation with no access control.
*/
class DummyMutex : public Mutex
{
public:
void acquire() override {}
void release() override {}
};
static DummyMutex dummyMutex;
Mutex * Mutex::ALWAYS_FREE = &dummyMutex;
} // namespace sta

76
src/spi_device.cpp Normal file
View File

@@ -0,0 +1,76 @@
#include <sta/spi_device.hpp>
#include <sta/assert.hpp>
namespace sta
{
SpiDevice::SpiDevice(SpiInterface * intf)
: intf_{intf}
{
STA_ASSERT(intf != nullptr);
}
void SpiDevice::beginTransmission()
{
// Acquire SPI access and activate device
intf_->acquire();
select();
}
void SpiDevice::endTransmission()
{
// Deactivate device and release SPI access
deselect();
intf_->release();
}
// Forward I/O operations to SPI interface
void SpiDevice::transfer(uint8_t data)
{
intf_->transfer(data);
}
void SpiDevice::transfer16(uint16_t data)
{
intf_->transfer16(data);
}
void SpiDevice::transfer(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
intf_->transfer(buffer, size);
}
void SpiDevice::transfer(const uint8_t * txBuffer, uint8_t * rxBuffer, size_t size)
{
STA_ASSERT(txBuffer != nullptr);
STA_ASSERT(rxBuffer != nullptr);
STA_ASSERT(size != 0);
intf_->transfer(txBuffer, rxBuffer, size);
}
void SpiDevice::receive(uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
intf_->receive(buffer, size);
}
void SpiDevice::fill(uint8_t value, size_t count)
{
STA_ASSERT(count != 0);
intf_->fill(value, count);
}
const SpiSettings & SpiDevice::settings() const
{
return intf_->settings();
}
} // namespace sta

21
src/spi_interface.cpp Normal file
View File

@@ -0,0 +1,21 @@
#include <sta/spi_interface.hpp>
namespace sta
{
SpiInterface::SpiInterface(Mutex * mutex /* = nullptr */)
: mutex_{mutex}
{}
void SpiInterface::acquire()
{
if (mutex_ != nullptr)
mutex_->acquire();
}
void SpiInterface::release()
{
if (mutex_ != nullptr)
mutex_->release();
}
} // namespace sta

72
src/spi_settings.cpp Normal file
View File

@@ -0,0 +1,72 @@
#include <sta/spi_settings.hpp>
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
SpiClkPolarity getSpiClkPolarity(SpiMode mode)
{
switch (mode)
{
case SpiMode::MODE_0:
case SpiMode::MODE_1:
return SpiClkPolarity::LOW;
case SpiMode::MODE_2:
case SpiMode::MODE_3:
return SpiClkPolarity::HIGH;
default:
// Unreachable case
STA_ASSERT_MSG(false, "Case for SpiMode enum not handled");
STA_UNREACHABLE();
}
}
SpiClkPhase getSpiClkPhase(SpiMode mode)
{
switch (mode)
{
case SpiMode::MODE_0:
case SpiMode::MODE_2:
return SpiClkPhase::EDGE_1;
case SpiMode::MODE_1:
case SpiMode::MODE_3:
return SpiClkPhase::EDGE_2;
default:
// Unreachable case
STA_ASSERT_MSG(false, "Case for SpiMode enum not handled");
STA_UNREACHABLE();
}
}
SpiMode getSpiMode(SpiClkPolarity polarity, SpiClkPhase phase)
{
if (polarity == SpiClkPolarity::LOW)
{
if (phase == SpiClkPhase::EDGE_1)
{
return SpiMode::MODE_0;
}
else
{
return SpiMode::MODE_1;
}
}
else
{
if (phase == SpiClkPhase::EDGE_1)
{
return SpiMode::MODE_2;
}
else
{
return SpiMode::MODE_3;
}
}
}
} // namespace sta

203
src/uart.cpp Normal file
View File

@@ -0,0 +1,203 @@
#include <sta/uart.hpp>
#include <sta/printf.hpp>
#include <cstring>
#include <cinttypes>
namespace sta
{
void UART::print(char c)
{
print(&c, 1);
}
void UART::print(bool b)
{
print(b ? "true" : "false");
}
void UART::print(double d)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "%f", d);
print(buffer);
}
void UART::print(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu8, sizeof(num));
}
void UART::print(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu16, sizeof(num));
}
void UART::print(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu32, sizeof(num));
}
void UART::print(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%z", sizeof(num));
}
void UART::print(const char * str)
{
print(str, strlen(str));
}
void UART::print(const char * str, size_t length)
{
write(reinterpret_cast<const uint8_t *>(str), length);
}
void UART::println()
{
print("\r\n", 2);
}
void UART::println(char c)
{
print(&c, 1);
println();
}
void UART::println(bool b)
{
print(b);
println();
}
void UART::println(double d)
{
print(d);
println();
}
void UART::println(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void UART::println(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void UART::println(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void UART::println(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void UART::println(const char * str)
{
println(str, strlen(str));
}
void UART::println(const char * str, size_t length)
{
print(str, length);
println();
}
void UART::printBase(uintmax_t num, IntegerBase base, const char * fmt, size_t size)
{
switch (base)
{
case IntegerBase::DEC:
printDec(num, fmt);
break;
case IntegerBase::BIN:
// Digits in base 2 = size in bytes * 8
printBin(num, size * 8);
break;
case IntegerBase::HEX:
// Digits in base 16 = size in bytes * 2
printHex(num, size * 2);
break;
default:
print("<invalid_base>");
}
}
void UART::printDec(uintmax_t num, const char * fmt)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), fmt, static_cast<uint32_t>(num));
print(buffer);
}
void UART::printBin(uintmax_t value, size_t digits)
{
// Need 8 digits for every byte
char buffer[sizeof(value) * 8];
// Check bounds
if (digits > sizeof(buffer))
{
print("<bin_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
for (size_t i = 0; i < digits; ++i)
{
// Convert bit to '0' or '1'
// First digit in buffer is MSB in value, so shift from high to low
buffer[i] = '0' + ((value >> (digits - 1 - i)) & 0x1);
}
print(buffer, digits);
}
void UART::printHex(uintmax_t value, size_t digits)
{
// Need 2 digits for every byte
char buffer[sizeof(value) * 2];
// Check bounds
if (digits > sizeof(buffer))
{
print("<hex_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
for (size_t i = 0; i < digits; ++i)
{
// Convert 4 bits to hex
// First digit in buffer is 4 MSBs in value, so shift from high to low
uint8_t hex = ((value >> ((digits - 1 - i) * 4)) & 0xF);
if (hex > 9)
buffer[i] = 'A' + (hex - 10);
else
buffer[i] = '0' + hex;
}
print(buffer, digits);
}
} // namespace sta