Fix indentation. Update doxygen comments

This commit is contained in:
Henrik Stickann
2023-02-02 22:22:14 +01:00
parent fc4eed38d5
commit 59585b2ae5
46 changed files with 2020 additions and 1960 deletions

View File

@@ -7,23 +7,23 @@
namespace sta
{
STA_WEAK
void assert_failed(const char * expr, const char * file, uint32_t line)
{
// printf("%s:%d: Assertion failed: %s", file, line, expr)
STA_DEBUG_PRINT(file);
STA_DEBUG_PRINT(':');
STA_DEBUG_PRINT(line);
STA_DEBUG_PRINT(": Assertion failed: ");
STA_DEBUG_PRINTLN(expr);
}
STA_WEAK
void assert_failed(const char * expr, const char * file, uint32_t line)
{
// printf("%s:%d: Assertion failed: %s", file, line, expr)
STA_DEBUG_PRINT(file);
STA_DEBUG_PRINT(':');
STA_DEBUG_PRINT(line);
STA_DEBUG_PRINT(": Assertion failed: ");
STA_DEBUG_PRINTLN(expr);
}
STA_WEAK
void assert_halt()
{
STA_BKPT();
while (true);
}
STA_WEAK
void assert_halt()
{
STA_BKPT();
while (true);
}
} // namespace sta

View File

@@ -4,19 +4,19 @@
namespace sta
{
AtomicMutex::AtomicMutex()
: lock_{ATOMIC_FLAG_INIT}
{}
AtomicMutex::AtomicMutex()
: lock_{ATOMIC_FLAG_INIT}
{}
void AtomicMutex::acquire()
{
while (lock_.test_and_set());
}
void AtomicMutex::acquire()
{
while (lock_.test_and_set());
}
void AtomicMutex::release()
{
lock_.clear();
}
void AtomicMutex::release()
{
lock_.clear();
}
} // namespace sta

View File

@@ -4,29 +4,29 @@
namespace sta
{
AtomicSignal::AtomicSignal()
: signal_{false}
{}
AtomicSignal::AtomicSignal()
: signal_{false}
{}
void AtomicSignal::notify()
{
signal_.store(true);
}
void AtomicSignal::notify()
{
signal_.store(true);
}
bool AtomicSignal::peek()
{
return signal_.load();
}
bool AtomicSignal::peek()
{
return signal_.load();
}
bool AtomicSignal::test()
{
return signal_.exchange(false);
}
bool AtomicSignal::test()
{
return signal_.exchange(false);
}
void AtomicSignal::wait()
{
while (!signal_.exchange(false));
}
void AtomicSignal::wait()
{
while (!signal_.exchange(false));
}
} // namespace sta

View File

@@ -3,24 +3,24 @@
namespace sta
{
bool operator ==(const CanId & lhs, const CanId & rhs)
{
return (lhs.sid == rhs.sid && lhs.eid == rhs.eid);
}
bool operator ==(const CanId & lhs, const CanId & rhs)
{
return (lhs.sid == rhs.sid && lhs.eid == rhs.eid);
}
bool operator !=(const CanId & lhs, const CanId & rhs)
{
return !(lhs == rhs);
}
bool operator !=(const CanId & lhs, const CanId & rhs)
{
return !(lhs == rhs);
}
bool operator ==(const CanFrameId & lhs, const CanFrameId & rhs)
{
return (lhs.format == rhs.format && lhs.sid == rhs.sid && lhs.eid == rhs.eid);
}
bool operator ==(const CanFrameId & lhs, const CanFrameId & rhs)
{
return (lhs.format == rhs.format && lhs.sid == rhs.sid && lhs.eid == rhs.eid);
}
bool operator !=(const CanFrameId & lhs, const CanFrameId & rhs)
{
return !(lhs == rhs);
}
bool operator !=(const CanFrameId & lhs, const CanFrameId & rhs)
{
return !(lhs == rhs);
}
} // namespace sta

View File

@@ -5,91 +5,91 @@
namespace sta
{
CanPendingRxFifos::const_iterator::const_iterator(uint32_t rxFlags, uint8_t idx, uint8_t endIdx)
: rxFlags_{rxFlags}, idx_{idx}, endIdx_{endIdx}
{}
CanPendingRxFifos::const_iterator::const_iterator(uint32_t rxFlags, uint8_t idx, uint8_t endIdx)
: rxFlags_{rxFlags}, idx_{idx}, endIdx_{endIdx}
{}
CanPendingRxFifos::const_iterator::const_iterator(const const_iterator & iter)
: rxFlags_{iter.rxFlags_}, idx_{iter.idx_}, endIdx_{iter.endIdx_}
{}
CanPendingRxFifos::const_iterator::const_iterator(const const_iterator & iter)
: rxFlags_{iter.rxFlags_}, idx_{iter.idx_}, endIdx_{iter.endIdx_}
{}
CanPendingRxFifos::const_iterator & CanPendingRxFifos::const_iterator::operator=(const const_iterator & iter)
{
rxFlags_ = iter.rxFlags_;
idx_ = iter.idx_;
endIdx_ = iter.endIdx_;
CanPendingRxFifos::const_iterator & CanPendingRxFifos::const_iterator::operator=(const const_iterator & iter)
{
rxFlags_ = iter.rxFlags_;
idx_ = iter.idx_;
endIdx_ = iter.endIdx_;
return *this;
}
return *this;
}
bool CanPendingRxFifos::const_iterator::operator==(const const_iterator & iter) const
{
return (rxFlags_ == iter.rxFlags_) && (idx_ == iter.idx_) && (endIdx_ == iter.endIdx_);
}
bool CanPendingRxFifos::const_iterator::operator==(const const_iterator & iter) const
{
return (rxFlags_ == iter.rxFlags_) && (idx_ == iter.idx_) && (endIdx_ == iter.endIdx_);
}
bool CanPendingRxFifos::const_iterator::operator!=(const const_iterator & iter) const
{
return !(*this == iter);
}
bool CanPendingRxFifos::const_iterator::operator!=(const const_iterator & iter) const
{
return !(*this == iter);
}
CanPendingRxFifos::const_iterator & CanPendingRxFifos::const_iterator::operator++()
{
while (idx_ < endIdx_)
{
++idx_;
if (isRxPending())
{
break;
}
}
CanPendingRxFifos::const_iterator & CanPendingRxFifos::const_iterator::operator++()
{
while (idx_ < endIdx_)
{
++idx_;
if (isRxPending())
{
break;
}
}
return *this;
}
return *this;
}
CanPendingRxFifos::const_iterator CanPendingRxFifos::const_iterator::operator++(int)
{
uint8_t oldIdx = idx_;
CanPendingRxFifos::const_iterator CanPendingRxFifos::const_iterator::operator++(int)
{
uint8_t oldIdx = idx_;
while (idx_ < endIdx_)
{
++idx_;
if (isRxPending())
{
break;
}
}
while (idx_ < endIdx_)
{
++idx_;
if (isRxPending())
{
break;
}
}
return const_iterator(rxFlags_, oldIdx, endIdx_);
}
return const_iterator(rxFlags_, oldIdx, endIdx_);
}
CanPendingRxFifos::const_iterator::reference CanPendingRxFifos::const_iterator::operator*() const
{
STA_ASSERT_MSG(idx_ != endIdx_, "Dereferencing out-of-bounds iterator");
CanPendingRxFifos::const_iterator::reference CanPendingRxFifos::const_iterator::operator*() const
{
STA_ASSERT_MSG(idx_ != endIdx_, "Dereferencing out-of-bounds iterator");
return idx_;
}
return idx_;
}
bool CanPendingRxFifos::const_iterator::isRxPending() const
{
return ( (rxFlags_ >> idx_) & 0x1 );
}
bool CanPendingRxFifos::const_iterator::isRxPending() const
{
return ( (rxFlags_ >> idx_) & 0x1 );
}
CanPendingRxFifos::CanPendingRxFifos(uint32_t rxFlags, uint8_t numFifos)
: rxFlags_{rxFlags}, numFifos_{numFifos}
{}
CanPendingRxFifos::CanPendingRxFifos(uint32_t rxFlags, uint8_t numFifos)
: rxFlags_{rxFlags}, numFifos_{numFifos}
{}
CanPendingRxFifos::const_iterator CanPendingRxFifos::begin() const
{
return const_iterator(rxFlags_, 0, numFifos_);
}
CanPendingRxFifos::const_iterator CanPendingRxFifos::begin() const
{
return const_iterator(rxFlags_, 0, numFifos_);
}
CanPendingRxFifos::const_iterator CanPendingRxFifos::end() const
{
return const_iterator(rxFlags_, numFifos_, numFifos_);
}
CanPendingRxFifos::const_iterator CanPendingRxFifos::end() const
{
return const_iterator(rxFlags_, numFifos_, numFifos_);
}
} // namespace sta

View File

@@ -16,14 +16,14 @@ using PlatformUART = sta::STM32UART;
namespace
{
// Create platform specific serial interface
PlatformUART platformDebugSerial(&STA_DEBUG_SERIAL_UART);
// Create platform specific serial interface
PlatformUART platformDebugSerial(&STA_DEBUG_SERIAL_UART);
}
namespace sta
{
// Create debug serial object using platform specific serial interface
PrintableUART DebugSerial(&platformDebugSerial);
// Create debug serial object using platform specific serial interface
PrintableUART DebugSerial(&platformDebugSerial);
} // namespace sta

View File

@@ -3,18 +3,18 @@
namespace sta
{
/**
* @brief Dummy mutex implementation with no access control.
*/
class DummyMutex : public Mutex
{
public:
void acquire() override {}
void release() override {}
};
/**
* @brief Dummy mutex implementation with no access control.
*/
class DummyMutex : public Mutex
{
public:
void acquire() override {}
void release() override {}
};
static DummyMutex dummyMutex;
static DummyMutex dummyMutex;
Mutex * Mutex::ALWAYS_FREE = &dummyMutex;
Mutex * Mutex::ALWAYS_FREE = &dummyMutex;
} // namespace sta

View File

@@ -10,202 +10,202 @@
namespace sta
{
PrintableUART::PrintableUART(UART * intf)
: intf_{intf}
{
STA_ASSERT(intf != nullptr);
}
PrintableUART::PrintableUART(UART * intf)
: intf_{intf}
{
STA_ASSERT(intf != nullptr);
}
void PrintableUART::print(char c)
{
print(&c, 1);
}
void PrintableUART::print(char c)
{
print(&c, 1);
}
void PrintableUART::print(bool b)
{
print(b ? "true" : "false");
}
void PrintableUART::print(bool b)
{
print(b ? "true" : "false");
}
void PrintableUART::print(double d)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "%f", d);
print(buffer);
}
void PrintableUART::print(double d)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "%f", d);
print(buffer);
}
void PrintableUART::print(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu8, sizeof(num));
}
void PrintableUART::print(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu8, sizeof(num));
}
void PrintableUART::print(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu16, sizeof(num));
}
void PrintableUART::print(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu16, sizeof(num));
}
void PrintableUART::print(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu32, sizeof(num));
}
void PrintableUART::print(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%" PRIu32, sizeof(num));
}
void PrintableUART::print(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%z", sizeof(num));
}
void PrintableUART::print(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
printBase(num, base, "%z", sizeof(num));
}
void PrintableUART::print(const char * str)
{
print(str, strlen(str));
}
void PrintableUART::print(const char * str)
{
print(str, strlen(str));
}
void PrintableUART::print(const char * str, size_t length)
{
intf_->write(reinterpret_cast<const uint8_t *>(str), length);
}
void PrintableUART::print(const char * str, size_t length)
{
intf_->write(reinterpret_cast<const uint8_t *>(str), length);
}
void PrintableUART::println()
{
print("\r\n", 2);
}
void PrintableUART::println()
{
print("\r\n", 2);
}
void PrintableUART::println(char c)
{
print(&c, 1);
println();
}
void PrintableUART::println(char c)
{
print(&c, 1);
println();
}
void PrintableUART::println(bool b)
{
print(b);
println();
}
void PrintableUART::println(bool b)
{
print(b);
println();
}
void PrintableUART::println(double d)
{
print(d);
println();
}
void PrintableUART::println(double d)
{
print(d);
println();
}
void PrintableUART::println(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(uint8_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(uint16_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(uint32_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(size_t num, IntegerBase base /* = IntegerBase::DEC */)
{
print(num, base);
println();
}
void PrintableUART::println(const char * str)
{
println(str, strlen(str));
}
void PrintableUART::println(const char * str)
{
println(str, strlen(str));
}
void PrintableUART::println(const char * str, size_t length)
{
print(str, length);
println();
}
void PrintableUART::println(const char * str, size_t length)
{
print(str, length);
println();
}
void PrintableUART::printBase(uintmax_t num, IntegerBase base, const char * fmt, size_t size)
{
switch (base)
{
case IntegerBase::DEC:
printDec(num, fmt);
break;
void PrintableUART::printBase(uintmax_t num, IntegerBase base, const char * fmt, size_t size)
{
switch (base)
{
case IntegerBase::DEC:
printDec(num, fmt);
break;
case IntegerBase::BIN:
// Digits in base 2 = size in bytes * 8
printBin(num, size * 8);
break;
case IntegerBase::BIN:
// Digits in base 2 = size in bytes * 8
printBin(num, size * 8);
break;
case IntegerBase::HEX:
// Digits in base 16 = size in bytes * 2
printHex(num, size * 2);
break;
case IntegerBase::HEX:
// Digits in base 16 = size in bytes * 2
printHex(num, size * 2);
break;
default:
print("<invalid_base>");
}
}
default:
print("<invalid_base>");
}
}
void PrintableUART::printDec(uintmax_t num, const char * fmt)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), fmt, static_cast<uint32_t>(num));
print(buffer);
}
void PrintableUART::printDec(uintmax_t num, const char * fmt)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), fmt, static_cast<uint32_t>(num));
print(buffer);
}
void PrintableUART::printBin(uintmax_t value, size_t digits)
{
// Need 8 digits for every byte
char buffer[sizeof(value) * 8];
void PrintableUART::printBin(uintmax_t value, size_t digits)
{
// Need 8 digits for every byte
char buffer[sizeof(value) * 8];
// Check bounds
if (digits > sizeof(buffer))
{
print("<bin_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
// Check bounds
if (digits > sizeof(buffer))
{
print("<bin_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
for (size_t i = 0; i < digits; ++i)
{
// Convert bit to '0' or '1'
// First digit in buffer is MSB in value, so shift from high to low
buffer[i] = '0' + ((value >> (digits - 1 - i)) & 0x1);
}
for (size_t i = 0; i < digits; ++i)
{
// Convert bit to '0' or '1'
// First digit in buffer is MSB in value, so shift from high to low
buffer[i] = '0' + ((value >> (digits - 1 - i)) & 0x1);
}
print(buffer, digits);
}
print(buffer, digits);
}
void PrintableUART::printHex(uintmax_t value, size_t digits)
{
// Need 2 digits for every byte
char buffer[sizeof(value) * 2];
void PrintableUART::printHex(uintmax_t value, size_t digits)
{
// Need 2 digits for every byte
char buffer[sizeof(value) * 2];
// Check bounds
if (digits > sizeof(buffer))
{
print("<hex_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
// Check bounds
if (digits > sizeof(buffer))
{
print("<hex_value_too_big>");
return;
}
// Nothing to do
if (digits == 0)
return;
for (size_t i = 0; i < digits; ++i)
{
// Convert 4 bits to hex
// First digit in buffer is 4 MSBs in value, so shift from high to low
uint8_t hex = ((value >> ((digits - 1 - i) * 4)) & 0xF);
if (hex > 9)
buffer[i] = 'A' + (hex - 10);
else
buffer[i] = '0' + hex;
}
for (size_t i = 0; i < digits; ++i)
{
// Convert 4 bits to hex
// First digit in buffer is 4 MSBs in value, so shift from high to low
uint8_t hex = ((value >> ((digits - 1 - i) * 4)) & 0xF);
if (hex > 9)
buffer[i] = 'A' + (hex - 10);
else
buffer[i] = '0' + hex;
}
print(buffer, digits);
}
print(buffer, digits);
}
} // namespace sta

View File

@@ -7,167 +7,167 @@
namespace sta
{
STM32CanController::STM32CanController(CAN_HandleTypeDef * handle)
: handle_{handle}
{
initFilters();
}
STM32CanController::STM32CanController(CAN_HandleTypeDef * handle)
: handle_{handle}
{
initFilters();
}
void STM32CanController::enableRxInterrupts()
{
HAL_CAN_ActivateNotification(handle_,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO1_MSG_PENDING
);
}
void STM32CanController::enableRxInterrupts()
{
HAL_CAN_ActivateNotification(handle_,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO1_MSG_PENDING
);
}
void STM32CanController::start()
{
HAL_CAN_Start(handle_);
}
void STM32CanController::start()
{
HAL_CAN_Start(handle_);
}
void STM32CanController::stop()
{
HAL_CAN_Stop(handle_);
}
void STM32CanController::stop()
{
HAL_CAN_Stop(handle_);
}
bool STM32CanController::sendFrame(const CanTxHeader & header, const uint8_t * payload)
{
STA_ASSERT_MSG(header.payloadLength <= 8, "CAN 2.0B payload size exceeded");
bool STM32CanController::sendFrame(const CanTxHeader & header, const uint8_t * payload)
{
STA_ASSERT_MSG(header.payloadLength <= 8, "CAN 2.0B payload size exceeded");
CAN_TxHeaderTypeDef halHeader;
CAN_TxHeaderTypeDef halHeader;
if (header.id.format == CanIdFormat::STD)
{
halHeader.StdId = header.id.sid & 0x7FF;
halHeader.IDE = CAN_ID_STD;
}
else
{
// Combine SID and EID
halHeader.ExtId = ((header.id.sid & 0x7FF) << 18) | (header.id.eid & 0x3FFFF);
halHeader.IDE = CAN_ID_EXT;
}
if (header.id.format == CanIdFormat::STD)
{
halHeader.StdId = header.id.sid & 0x7FF;
halHeader.IDE = CAN_ID_STD;
}
else
{
// Combine SID and EID
halHeader.ExtId = ((header.id.sid & 0x7FF) << 18) | (header.id.eid & 0x3FFFF);
halHeader.IDE = CAN_ID_EXT;
}
halHeader.DLC = header.payloadLength;
halHeader.DLC = header.payloadLength;
uint32_t mailbox; // Don't care
return (HAL_OK == HAL_CAN_AddTxMessage(handle_, &halHeader, const_cast<uint8_t *>(payload), &mailbox));
}
uint32_t mailbox; // Don't care
return (HAL_OK == HAL_CAN_AddTxMessage(handle_, &halHeader, const_cast<uint8_t *>(payload), &mailbox));
}
bool STM32CanController::receiveFrame(uint8_t fifo, CanRxHeader * header, uint8_t * payload)
{
// Check if message is available
if (HAL_CAN_GetRxFifoFillLevel(handle_, fifo) == 0)
return false;
bool STM32CanController::receiveFrame(uint8_t fifo, CanRxHeader * header, uint8_t * payload)
{
// Check if message is available
if (HAL_CAN_GetRxFifoFillLevel(handle_, fifo) == 0)
return false;
// Retrieve message
CAN_RxHeaderTypeDef halHeader;
HAL_CAN_GetRxMessage(handle_, fifo, &halHeader, payload);
// Retrieve message
CAN_RxHeaderTypeDef halHeader;
HAL_CAN_GetRxMessage(handle_, fifo, &halHeader, payload);
if (halHeader.IDE == CAN_ID_STD)
{
header->id.format = CanIdFormat::STD;
header->id.sid = halHeader.StdId;
header->id.eid = 0;
}
else
{
header->id.format = CanIdFormat::EXT;
// Separate SID and EID
header->id.sid = (halHeader.ExtId >> 18);
header->id.eid = halHeader.ExtId & 0x3FFFF;
}
// No conversion required for CAN 2B standard
header->payloadLength = halHeader.DLC;
header->timestamp = halHeader.Timestamp;
header->filter = halHeader.FilterMatchIndex;
if (halHeader.IDE == CAN_ID_STD)
{
header->id.format = CanIdFormat::STD;
header->id.sid = halHeader.StdId;
header->id.eid = 0;
}
else
{
header->id.format = CanIdFormat::EXT;
// Separate SID and EID
header->id.sid = (halHeader.ExtId >> 18);
header->id.eid = halHeader.ExtId & 0x3FFFF;
}
// No conversion required for CAN 2B standard
header->payloadLength = halHeader.DLC;
header->timestamp = halHeader.Timestamp;
header->filter = halHeader.FilterMatchIndex;
return true;
}
return true;
}
uint32_t STM32CanController::getRxFifoFlags()
{
//
return (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO0) != 0)
| (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO1) != 0) << 1;
}
uint32_t STM32CanController::getRxFifoFlags()
{
//
return (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO0) != 0)
| (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO1) != 0) << 1;
}
void STM32CanController::configureFilter(uint8_t idx, const CanFilter & filter, bool active /* = false */)
{
CAN_FilterTypeDef * config = &filters_[idx];
void STM32CanController::configureFilter(uint8_t idx, const CanFilter & filter, bool active /* = false */)
{
CAN_FilterTypeDef * config = &filters_[idx];
if (filter.type == CanFilterIdFormat::STD)
{
config->FilterIdHigh = 0;
config->FilterIdLow = filter.obj.sid & 0x7FF;
config->FilterMaskIdHigh = 0;
config->FilterMaskIdLow = filter.mask.sid & 0x7FF;
}
else
{
config->FilterIdHigh = ((filter.obj.sid & 0x7FF) << 2) | ((filter.obj.eid >> 16) & 0x3);
config->FilterIdLow = filter.obj.eid & 0xFFFF;
config->FilterMaskIdHigh = ((filter.mask.sid & 0x7FF) << 2) | ((filter.mask.eid >> 16) & 0x3);
config->FilterMaskIdLow = filter.mask.eid & 0xFFFF;
}
if (filter.type == CanFilterIdFormat::STD)
{
config->FilterIdHigh = 0;
config->FilterIdLow = filter.obj.sid & 0x7FF;
config->FilterMaskIdHigh = 0;
config->FilterMaskIdLow = filter.mask.sid & 0x7FF;
}
else
{
config->FilterIdHigh = ((filter.obj.sid & 0x7FF) << 2) | ((filter.obj.eid >> 16) & 0x3);
config->FilterIdLow = filter.obj.eid & 0xFFFF;
config->FilterMaskIdHigh = ((filter.mask.sid & 0x7FF) << 2) | ((filter.mask.eid >> 16) & 0x3);
config->FilterMaskIdLow = filter.mask.eid & 0xFFFF;
}
config->FilterFIFOAssignment = filter.fifo;
config->FilterActivation = (active ? CAN_FILTER_ENABLE : CAN_FILTER_DISABLE);
config->FilterFIFOAssignment = filter.fifo;
config->FilterActivation = (active ? CAN_FILTER_ENABLE : CAN_FILTER_DISABLE);
HAL_CAN_ConfigFilter(handle_, config);
}
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::enableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
void STM32CanController::enableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_ENABLE;
config->FilterActivation = CAN_FILTER_ENABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::disableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
void STM32CanController::disableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_DISABLE;
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::clearFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
void STM32CanController::clearFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
// Only disable active filters
if (config->FilterActivation == CAN_FILTER_ENABLE)
{
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
}
}
// Only disable active filters
if (config->FilterActivation == CAN_FILTER_ENABLE)
{
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
}
}
void STM32CanController::initFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
void STM32CanController::initFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
config->FilterBank = i;
config->FilterMode = CAN_FILTERMODE_IDMASK;
config->FilterScale = CAN_FILTERSCALE_32BIT;
config->FilterActivation = CAN_FILTER_DISABLE;
config->SlaveStartFilterBank = MAX_FILTER_COUNT;
}
}
config->FilterBank = i;
config->FilterMode = CAN_FILTERMODE_IDMASK;
config->FilterScale = CAN_FILTERSCALE_32BIT;
config->FilterActivation = CAN_FILTER_DISABLE;
config->SlaveStartFilterBank = MAX_FILTER_COUNT;
}
}
} // namespace sta
@@ -177,31 +177,31 @@ namespace sta
namespace sta
{
STM32CanController CanBus(&STA_STM32_CAN_GLOBAL);
STM32CanController CanBus(&STA_STM32_CAN_GLOBAL);
STA_WEAK
void CanBus_RxPendingCallback()
{}
STA_WEAK
void CanBus_RxPendingCallback()
{}
} // namespace sta
extern "C"
{
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
}
#endif // STA_STM32_CAN_GLOBAL

View File

@@ -10,10 +10,10 @@
namespace sta
{
void delayMs(uint32_t ms)
{
HAL_Delay(ms);
}
void delayMs(uint32_t ms)
{
HAL_Delay(ms);
}
} // namespace sta
@@ -27,46 +27,46 @@ namespace sta
namespace sta
{
uint32_t gDelayUsMul = 1;
uint32_t gDelayUsMul = 1;
void delayUs(uint32_t us)
{
__HAL_TIM_SET_COUNTER(&STA_STM32_DELAY_US_TIM, 0);
while (__HAL_TIM_GET_COUNTER(&STA_STM32_DELAY_US_TIM) < us * gDelayUsMul);
}
void delayUs(uint32_t us)
{
__HAL_TIM_SET_COUNTER(&STA_STM32_DELAY_US_TIM, 0);
while (__HAL_TIM_GET_COUNTER(&STA_STM32_DELAY_US_TIM) < us * gDelayUsMul);
}
bool isValidDelayUsTIM()
{
// Get PCLK multiplier for TIM clock
uint32_t pclkMul = 1;
switch (STA_STM32_DELAY_US_TIM.Init.ClockDivision)
{
case TIM_CLOCKDIVISION_DIV1:
pclkMul = 1;
break;
case TIM_CLOCKDIVISION_DIV2:
pclkMul = 2;
break;
case TIM_CLOCKDIVISION_DIV4:
pclkMul = 4;
break;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
bool isValidDelayUsTIM()
{
// Get PCLK multiplier for TIM clock
uint32_t pclkMul = 1;
switch (STA_STM32_DELAY_US_TIM.Init.ClockDivision)
{
case TIM_CLOCKDIVISION_DIV1:
pclkMul = 1;
break;
case TIM_CLOCKDIVISION_DIV2:
pclkMul = 2;
break;
case TIM_CLOCKDIVISION_DIV4:
pclkMul = 4;
break;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
// Calculate TIM clock frequency
uint32_t clkFreq = pclkMul * STA_STM32_GET_HANDLE_PCLK_FREQ_FN(STA_STM32_DELAY_US_TIM)();
// Calculate update frequency based on prescaler value
uint32_t prescaler = (STA_STM32_DELAY_US_TIM.Init.Prescaler) ? STA_STM32_DELAY_US_TIM.Init.Prescaler : 1;
uint32_t updateFreq = clkFreq / prescaler;
// Calculate TIM clock frequency
uint32_t clkFreq = pclkMul * STA_STM32_GET_HANDLE_PCLK_FREQ_FN(STA_STM32_DELAY_US_TIM)();
// Calculate update frequency based on prescaler value
uint32_t prescaler = (STA_STM32_DELAY_US_TIM.Init.Prescaler) ? STA_STM32_DELAY_US_TIM.Init.Prescaler : 1;
uint32_t updateFreq = clkFreq / prescaler;
gDelayUsMul = updateFreq / 1000000;
gDelayUsMul = updateFreq / 1000000;
// TIM must have at least microsecond precision (>= 1 MHz frequency)
return (updateFreq >= 1000000);
}
// TIM must have at least microsecond precision (>= 1 MHz frequency)
return (updateFreq >= 1000000);
}
} // namespace sta
#endif // STA_STM32_DELAY_US_TIM

View File

@@ -7,76 +7,76 @@
namespace sta
{
STM32GpioPin::STM32GpioPin(GPIO_TypeDef * port, uint16_t pin)
: port_{port}, pin_{pin}
{
STA_ASSERT(port != nullptr);
}
STM32GpioPin::STM32GpioPin(GPIO_TypeDef * port, uint16_t pin)
: port_{port}, pin_{pin}
{
STA_ASSERT(port != nullptr);
}
void STM32GpioPin::setState(GpioPinState state)
{
HAL_GPIO_WritePin(port_, pin_, (state == GpioPinState::LOW) ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
void STM32GpioPin::setState(GpioPinState state)
{
HAL_GPIO_WritePin(port_, pin_, (state == GpioPinState::LOW) ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
GPIO_TypeDef * STM32GpioPin::getPort() const
{
return port_;
}
GPIO_TypeDef * STM32GpioPin::getPort() const
{
return port_;
}
uint16_t STM32GpioPin::getPin() const
{
return pin_;
}
uint16_t STM32GpioPin::getPin() const
{
return pin_;
}
uint8_t STM32GpioPin::getPortIndex() const
{
return GPIO_GET_INDEX(port_);
}
uint8_t STM32GpioPin::getPortIndex() const
{
return GPIO_GET_INDEX(port_);
}
bool isInterruptEdge(const STM32GpioPin & gpioPin, InterruptEdge edge)
{
uint32_t pin = gpioPin.getPin();
bool isInterruptEdge(const STM32GpioPin & gpioPin, InterruptEdge edge)
{
uint32_t pin = gpioPin.getPin();
for (uint32_t i = 0; i < 8 * sizeof(pin); ++i)
{
uint32_t ioPos = 1U << i;
if (pin & ioPos)
{
// Check input mode
uint32_t mode = (gpioPin.getPort()->MODER >> (2U * i)) & GPIO_MODE;
if (mode != MODE_INPUT)
{
return false;
}
for (uint32_t i = 0; i < 8 * sizeof(pin); ++i)
{
uint32_t ioPos = 1U << i;
if (pin & ioPos)
{
// Check input mode
uint32_t mode = (gpioPin.getPort()->MODER >> (2U * i)) & GPIO_MODE;
if (mode != MODE_INPUT)
{
return false;
}
// Is EXTI configured?
if (EXTI->IMR & ioPos)
{
bool rising = (EXTI->RTSR & ioPos);
bool falling = (EXTI->FTSR & ioPos);
// Is EXTI configured?
if (EXTI->IMR & ioPos)
{
bool rising = (EXTI->RTSR & ioPos);
bool falling = (EXTI->FTSR & ioPos);
switch (edge)
{
case InterruptEdge::RISING:
return rising;
switch (edge)
{
case InterruptEdge::RISING:
return rising;
case InterruptEdge::FALLING:
return falling;
case InterruptEdge::FALLING:
return falling;
case InterruptEdge::BOTH:
return rising && falling;
case InterruptEdge::BOTH:
return rising && falling;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
}
}
}
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
}
}
}
return false;
}
return false;
}
} // namespace sta

View File

@@ -15,14 +15,14 @@
namespace sta
{
void initHAL()
{
void initHAL()
{
#ifdef STA_STM32_DELAY_US_TIM
// Validate TIM used for delayUs
extern bool isValidDelayUsTIM();
STA_ASSERT(isValidDelayUsTIM());
// Start timer base
HAL_TIM_Base_Start(&STA_STM32_DELAY_US_TIM);
// Validate TIM used for delayUs
extern bool isValidDelayUsTIM();
STA_ASSERT(isValidDelayUsTIM());
// Start timer base
HAL_TIM_Base_Start(&STA_STM32_DELAY_US_TIM);
#endif // STA_STM32_DELAY_US_TIM
}
}
} // namespace sta

View File

@@ -6,19 +6,19 @@
namespace sta
{
STM32UART::STM32UART(UART_HandleTypeDef * handle)
: handle_{handle}
{
STA_ASSERT(handle != nullptr);
}
STM32UART::STM32UART(UART_HandleTypeDef * handle)
: handle_{handle}
{
STA_ASSERT(handle != nullptr);
}
void STM32UART::write(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
void STM32UART::write(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_UART_Transmit(handle_, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
HAL_UART_Transmit(handle_, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
} // namespace sta

View File

@@ -9,21 +9,21 @@
namespace sta
{
void UART::write(uint8_t value)
{
// TODO Handle endian-ness
write(&value, 1);
}
void UART::write(uint8_t value)
{
// TODO Handle endian-ness
write(&value, 1);
}
void UART::write(uint16_t value)
{
// TODO Handle endian-ness
write(reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
void UART::write(uint16_t value)
{
// TODO Handle endian-ness
write(reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
void UART::write(uint32_t value)
{
// TODO Handle endian-ness
write(reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
void UART::write(uint32_t value)
{
// TODO Handle endian-ness
write(reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
} // namespace sta