Move STM32 related code to sta-stm32-core repo

This commit is contained in:
Henrik Stickann
2022-05-09 21:19:06 +02:00
commit 460f4e3c25
19 changed files with 1309 additions and 0 deletions

210
src/can.cpp Normal file
View File

@@ -0,0 +1,210 @@
#include <sta/stm32/can.hpp>
#ifdef STA_STM32_CAN_ENABLE
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
STM32CanController::STM32CanController(CAN_HandleTypeDef * handle)
: handle_{handle}
{
initFilters();
}
void STM32CanController::enableRxInterrupts()
{
HAL_CAN_ActivateNotification(handle_,
CAN_IT_RX_FIFO0_MSG_PENDING | CAN_IT_RX_FIFO1_MSG_PENDING
);
}
void STM32CanController::start()
{
HAL_CAN_Start(handle_);
}
void STM32CanController::stop()
{
HAL_CAN_Stop(handle_);
}
bool STM32CanController::sendFrame(const CanTxHeader & header, const uint8_t * payload)
{
STA_ASSERT_MSG(header.payloadLength <= 8, "CAN 2.0B payload size exceeded");
CAN_TxHeaderTypeDef halHeader;
if (header.id.format == CanIdFormat::STD)
{
halHeader.StdId = header.id.sid & 0x7FF;
halHeader.IDE = CAN_ID_STD;
}
else
{
// Combine SID and EID
halHeader.ExtId = ((header.id.sid & 0x7FF) << 18) | (header.id.eid & 0x3FFFF);
halHeader.IDE = CAN_ID_EXT;
}
halHeader.DLC = header.payloadLength;
uint32_t mailbox; // Don't care
return (HAL_OK == HAL_CAN_AddTxMessage(handle_, &halHeader, const_cast<uint8_t *>(payload), &mailbox));
}
bool STM32CanController::receiveFrame(uint8_t fifo, CanRxHeader * header, uint8_t * payload)
{
// Check if message is available
if (HAL_CAN_GetRxFifoFillLevel(handle_, fifo) == 0)
return false;
// Retrieve message
CAN_RxHeaderTypeDef halHeader;
HAL_CAN_GetRxMessage(handle_, fifo, &halHeader, payload);
if (halHeader.IDE == CAN_ID_STD)
{
header->id.format = CanIdFormat::STD;
header->id.sid = halHeader.StdId;
header->id.eid = 0;
}
else
{
header->id.format = CanIdFormat::EXT;
// Separate SID and EID
header->id.sid = (halHeader.ExtId >> 18);
header->id.eid = halHeader.ExtId & 0x3FFFF;
}
// No conversion required for CAN 2B standard
header->payloadLength = halHeader.DLC;
header->timestamp = halHeader.Timestamp;
header->filter = halHeader.FilterMatchIndex;
return true;
}
uint32_t STM32CanController::getRxFifoFlags()
{
//
return (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO0) != 0)
| (HAL_CAN_GetRxFifoFillLevel(handle_, CAN_RX_FIFO1) != 0) << 1;
}
void STM32CanController::configureFilter(uint8_t idx, const CanFilter & filter, bool active /* = false */)
{
CAN_FilterTypeDef * config = &filters_[idx];
if (filter.type == CanFilterIdFormat::STD)
{
config->FilterIdHigh = 0;
config->FilterIdLow = filter.obj.sid & 0x7FF;
config->FilterMaskIdHigh = 0;
config->FilterMaskIdLow = filter.mask.sid & 0x7FF;
}
else
{
config->FilterIdHigh = ((filter.obj.sid & 0x7FF) << 2) | ((filter.obj.eid >> 16) & 0x3);
config->FilterIdLow = filter.obj.eid & 0xFFFF;
config->FilterMaskIdHigh = ((filter.mask.sid & 0x7FF) << 2) | ((filter.mask.eid >> 16) & 0x3);
config->FilterMaskIdLow = filter.mask.eid & 0xFFFF;
}
config->FilterFIFOAssignment = filter.fifo;
config->FilterActivation = (active ? CAN_FILTER_ENABLE : CAN_FILTER_DISABLE);
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::enableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_ENABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::disableFilter(uint8_t idx)
{
CAN_FilterTypeDef * config = &filters_[idx];
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
void STM32CanController::clearFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
// Only disable active filters
if (config->FilterActivation == CAN_FILTER_ENABLE)
{
config->FilterActivation = CAN_FILTER_DISABLE;
HAL_CAN_ConfigFilter(handle_, config);
}
}
}
void STM32CanController::initFilters()
{
for (uint32_t i = 0; i < MAX_FILTER_COUNT; ++i)
{
CAN_FilterTypeDef * config = &filters_[i];
config->FilterBank = i;
config->FilterMode = CAN_FILTERMODE_IDMASK;
config->FilterScale = CAN_FILTERSCALE_32BIT;
config->FilterActivation = CAN_FILTER_DISABLE;
config->SlaveStartFilterBank = MAX_FILTER_COUNT;
}
}
} // namespace sta
#ifdef STA_STM32_CAN_GLOBAL
#include <can.h>
namespace sta
{
STM32CanController CanBus(&STA_STM32_CAN_GLOBAL);
STA_WEAK
void CanBus_RxPendingCallback()
{}
} // namespace sta
extern "C"
{
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
if (hcan == &STA_STM32_CAN_GLOBAL)
{
sta::CanBus_RxPendingCallback();
}
}
}
#endif // STA_STM32_CAN_GLOBAL
#endif // STA_STM32_CAN_ENABLE

66
src/delay.cpp Normal file
View File

@@ -0,0 +1,66 @@
#include <sta/stm32/delay.hpp>
#ifdef STA_STM32_DELAY_ENABLE
#include <sta/stm32/hal.hpp>
#include <sta/stm32/clocks.hpp>
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
void delayMs(uint32_t ms)
{
HAL_Delay(ms);
}
} // namespace sta
#ifdef STA_STM32_DELAY_US_TIM
#include <tim.h>
namespace sta
{
void delayUs(uint32_t us)
{
__HAL_TIM_SET_COUNTER(&STA_STM32_DELAY_US_TIM, 0);
while (__HAL_TIM_GET_COUNTER(&STA_STM32_DELAY_US_TIM) < us);
}
bool isValidDelayUsTIM()
{
// Get PCLK multiplier for TIM clock
uint32_t pclkMul = 1;
switch (STA_STM32_DELAY_US_TIM.Init.ClockDivision)
{
case TIM_CLOCKDIVISION_DIV1:
pclkMul = 1;
break;
case TIM_CLOCKDIVISION_DIV2:
pclkMul = 2;
break;
case TIM_CLOCKDIVISION_DIV4:
pclkMul = 4;
break;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
// Calculate TIM clock frequency
uint32_t clkFreq = pclkMul * STA_STM32_GET_HANDLE_PCLK_FREQ_FN(STA_STM32_DELAY_US_TIM)();
// Calculate update frequency based on prescaler value
uint32_t updateFreq = clkFreq / STA_STM32_DELAY_US_TIM.Init.Prescaler;
// TIM must have at least microsecond precision (>= 1 MHz frequency)
return (updateFreq == 1000000);
}
} // namespace sta
#endif // STA_STM32_DELAY_US_TIM
#endif // STA_STM32_DELAY_ENABLE

83
src/gpio_pin.cpp Normal file
View File

@@ -0,0 +1,83 @@
#include <sta/stm32/gpio_pin.hpp>
#ifdef STA_STM32_GPIO_ENABLE
#include <sta/assert.hpp>
#include <sta/lang.hpp>
namespace sta
{
STM32GpioPin::STM32GpioPin(GPIO_TypeDef * port, uint16_t pin)
: port_{port}, pin_{pin}
{
STA_ASSERT(port != nullptr);
}
void STM32GpioPin::setState(GpioPinState state)
{
HAL_GPIO_WritePin(port_, pin_, (state == GpioPinState::LOW) ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
GPIO_TypeDef * STM32GpioPin::getPort() const
{
return port_;
}
uint16_t STM32GpioPin::getPin() const
{
return pin_;
}
uint8_t STM32GpioPin::getIndex() const
{
return GPIO_GET_INDEX(port_);
}
bool isInterruptEdge(const STM32GpioPin & gpioPin, InterruptEdge edge)
{
uint32_t pin = gpioPin.getPin();
for (uint32_t i = 0; i < 8 * sizeof(pin); ++i)
{
uint32_t ioPos = 1U << i;
if (pin & ioPos)
{
// Check input mode
uint32_t mode = (gpioPin.getPort()->MODER >> (2U * i)) & GPIO_MODE;
if (mode != MODE_INPUT)
{
return false;
}
// Is EXTI configured?
if (EXTI->IMR & ioPos)
{
bool rising = (EXTI->RTSR & ioPos);
bool falling = (EXTI->FTSR & ioPos);
switch (edge)
{
case InterruptEdge::RISING:
return rising;
case InterruptEdge::FALLING:
return falling;
case InterruptEdge::BOTH:
return rising && falling;
default:
STA_ASSERT(false);
STA_UNREACHABLE();
}
}
}
}
return false;
}
} // namespace sta
#endif // STA_STM32_GPIO_ENABLE

22
src/init.cpp Normal file
View File

@@ -0,0 +1,22 @@
#include <sta/stm32/init.hpp>
#include <sta/assert.hpp>
#ifdef STA_STM32_DELAY_US_TIM
#include <tim.h>
#endif // STA_STM32_DELAY_US_TIM
namespace sta
{
void initHAL()
{
#ifdef STA_STM32_DELAY_US_TIM
// Validate TIM used for delayUs
extern bool isValidDelayUsTIM();
STA_ASSERT(isValidDelayUsTIM());
// Start timer base
HAL_TIM_Base_Start(&STA_STM32_DELAY_US_TIM);
#endif // STA_STM32_DELAY_US_TIM
}
} // namespace sta

181
src/spi.cpp Normal file
View File

@@ -0,0 +1,181 @@
#include <sta/stm32/spi.hpp>
#ifdef STA_STM32_SPI_ENABLE
#include <sta/assert.hpp>
#include <sta/endian.hpp>
#include <sta/lang.hpp>
#ifdef STA_MCU_LITTLE_ENDIAN
# define STA_STM32_SPI_REVERSE_BIT_ORDER SpiBitOrder::MSB
#elif STA_MCU_BIG_ENDIAN
# define STA_STM32_SPI_REVERSE_BIT_ORDER SpiBitOrder::LSB
#else // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
# ifdef STA_STM32_SPI_REVERSE_BIT_ORDER
# warning "Internal STA_STM32_SPI_REVERSE_BIT_ORDER macro manually defined! Better now what you are doing!!!"
# else // !STA_STM32_SPI_REVERSE_BIT_ORDER
# error "Unknown endian-ness. Define STA_MCU_LITTLE_ENDIAN or STA_MCU_BIG_ENDIAN in <sta/config.hpp>"
# endif // !STA_STM32_SPI_REVERSE_BIT_ORDER
#endif // !STA_MCU_LITTLE_ENDIAN && !STA_MCU_BIG_ENDIAN
namespace sta
{
static SpiSettings getSpiSettings(SPI_HandleTypeDef * handle, uint32_t pclkFreq)
{
SpiSettings settings;
settings.mode = getSpiMode(
(handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? SpiClkPolarity::LOW : SpiClkPolarity::HIGH,
(handle->Init.CLKPhase == SPI_PHASE_1EDGE) ? SpiClkPhase::EDGE_1 : SpiClkPhase::EDGE_2
);
settings.dataSize = (handle->Init.DataSize == SPI_DATASIZE_8BIT) ? SpiDataSize::SIZE_8 : SpiDataSize::SIZE_16;
settings.bitOrder = (handle->Init.FirstBit == SPI_FIRSTBIT_MSB) ? SpiBitOrder::MSB : SpiBitOrder::LSB;
uint32_t prescaler = 1;
switch (handle->Init.BaudRatePrescaler)
{
case SPI_BAUDRATEPRESCALER_2:
prescaler = 2;
break;
case SPI_BAUDRATEPRESCALER_4:
prescaler = 4;
break;
case SPI_BAUDRATEPRESCALER_8:
prescaler = 8;
break;
case SPI_BAUDRATEPRESCALER_16:
prescaler = 16;
break;
case SPI_BAUDRATEPRESCALER_32:
prescaler = 32;
break;
case SPI_BAUDRATEPRESCALER_64:
prescaler = 64;
break;
case SPI_BAUDRATEPRESCALER_128:
prescaler = 128;
break;
case SPI_BAUDRATEPRESCALER_256:
prescaler = 256;
break;
default:
// Unreachable case
STA_ASSERT_MSG(false, "Case for SPI_BAUDRATEPRESCALER not handled");
STA_UNREACHABLE();
}
// SPI clock speed is based of PCLK
settings.clkSpeed = pclkFreq / prescaler;
return settings;
}
STM32SpiInterface::STM32SpiInterface(const STM32SpiInterfaceInfo & info, Mutex * mutex /* = nullptr */)
: SpiInterface(mutex), info_{info}
{
STA_ASSERT(info.handle != nullptr);
STA_ASSERT(info.getPCLKFreq != nullptr);
}
void STM32SpiInterface::transfer(uint8_t value)
{
if (settings().dataSize == SpiDataSize::SIZE_8)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
void STM32SpiInterface::transfer16(uint16_t value)
{
uint16_t size = 1;
// Send as two bytes if data size is 8-bit
if (settings().dataSize == SpiDataSize::SIZE_8)
{
size = 2;
if (settings().bitOrder == STA_STM32_SPI_REVERSE_BIT_ORDER)
{
// Reverse byte order from internal representation
value = STA_UINT16_SWAP_BYTE_ORDER(value);
}
}
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&value), size, HAL_MAX_DELAY);
}
void STM32SpiInterface::transfer(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_Transmit(info_.handle, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
void STM32SpiInterface::transfer(const uint8_t * txBuffer, uint8_t * rxBuffer, size_t size)
{
STA_ASSERT(txBuffer != nullptr);
STA_ASSERT(rxBuffer != nullptr);
STA_ASSERT(size != 0);
HAL_SPI_TransmitReceive(info_.handle, const_cast<uint8_t *>(txBuffer), rxBuffer, size, HAL_MAX_DELAY);
}
void STM32SpiInterface::receive(uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_SPI_Receive(info_.handle, buffer, size, HAL_MAX_DELAY);
}
void STM32SpiInterface::fill(uint8_t value, size_t count)
{
STA_ASSERT(count != 0);
if (settings().dataSize == SpiDataSize::SIZE_8)
{
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, &value, 1, HAL_MAX_DELAY);
}
}
else
{
// Required since tx buffer is cast to uint16_t * internally
uint16_t dummy = value;
for (size_t i = 0; i < count; ++i)
{
HAL_SPI_Transmit(info_.handle, reinterpret_cast<uint8_t *>(&dummy), 1, HAL_MAX_DELAY);
}
}
}
const SpiSettings & STM32SpiInterface::settings() const
{
// Cache settings
static SpiSettings settings = getSpiSettings(info_.handle, info_.getPCLKFreq());
return settings;
}
STM32SpiDevice::STM32SpiDevice(STM32SpiInterface * intf, STM32GpioPin csPin)
: SpiDevice(intf, &csPin_), csPin_{csPin}
{}
} // namespace sta
#endif // STA_HAL_SPI_ENABLE

43
src/uart.cpp Normal file
View File

@@ -0,0 +1,43 @@
#include <sta/stm32/uart.hpp>
#ifdef STA_STM32_UART_ENABLE
#include <sta/assert.hpp>
namespace sta
{
STM32UART::STM32UART(UART_HandleTypeDef * handle)
: handle_{handle}
{
STA_ASSERT(handle != nullptr);
}
void STM32UART::write(const uint8_t * buffer, size_t size)
{
STA_ASSERT(buffer != nullptr);
HAL_UART_Transmit(handle_, const_cast<uint8_t *>(buffer), size, HAL_MAX_DELAY);
}
} // namespace sta
#ifdef STA_STM32_UART_DEBUG_SERIAL
// Get extern declaration for DebugSerial because const namespace level variables have internal linkage by default
#include <sta/debug_serial.hpp>
#include <usart.h>
namespace sta
{
STM32UART gStm32DebugSerial(&STA_STM32_UART_DEBUG_SERIAL);
// Used by <sta/debug.hpp>
PrintableUART DebugSerial(&gStm32DebugSerial);
} // namespace sta
#endif // STA_STM32_UART_DEBUG_SERIAL
#endif // STA_STM32_UART_ENABLE