Merge pull request 'Added simple logger' (#1) from feature/logger into main

Reviewed-on: https://git.intern.spaceteamaachen.de/ALPAKA/driver-w25qxxx/pulls/1
Reviewed-by: carlwachter <carlwachter@noreply.git.intern.spaceteamaachen.de>
This commit is contained in:
dario 2024-06-15 13:29:57 +00:00
commit 82e6dd388c
5 changed files with 416 additions and 142 deletions

View File

@ -2,6 +2,7 @@
#define STA_SENSORS_W25Q128_HPP
#include <sta/bus/spi/device.hpp>
#include <sta/mutex.hpp>
#include <sta/drivers/w25qxx_defs.hpp>
#include <functional>
@ -60,12 +61,14 @@ namespace sta
using DelayUsFunc = void (*)(uint32_t);
/**
* @brief Construct a new W25Qxx object
* @brief Driver class for the W25QXX flash storage series.
*
* @param device
* @param addrMode
* @param device A SPI device handle from sta-core.
* @param delay A microsecond delay function.
* @param addrMode Choose between 24 Bit and 32 Bit addressing.
* @param mutex A mutex for thread safety if the flash chip is used by multiple threads. Defaults to a always free mutex.
*/
W25Qxx(SPIDevice * device, DelayUsFunc delay, AddressMode addrMode = AddressMode::_24BIT);
W25Qxx(SPIDevice * device, DelayUsFunc delay, AddressMode addrMode = AddressMode::_24BIT, Mutex * mutex = Mutex::ALWAYS_FREE);
/**
* @brief Initialize the flash chip.
@ -74,18 +77,12 @@ namespace sta
*/
uint8_t init();
uint32_t getChunkBytes(ChunkSize size);
/**
* @brief Find the first memory section not satisfying a given criterion using a binary search.
* @brief Checks if the flash is busy writing or erasing.
*
* @note This function assume that there is a page n such that every page before n satisfies the criterion, while every page after that doesn't
*
* @param criterion A function evaluating the criterion on a page.
* @param size The size of the memory section. Has to be one of the predefined sizes.
* @return uint32_t The last address such that the criterion is satisfied.
* @return bool Returns true if the flash is busy, false otherwise.
*/
uint32_t findLast(std::function<bool(uint8_t*)> criterion, ChunkSize size);
bool isBusy();
/**
* @brief Set the Address Mode object
@ -147,40 +144,6 @@ namespace sta
// reset device
// Extended address register read / write?
// Enter 4-Byte address mode
// Exit 4-Byte address mode
public:
/*
* Status registers.
*/
/**
* @brief Read one of the flash's status registers.
*
* @param regID The ID of the status register. Can only be 1, 2 or 3.
* @param status_byte A pointer to the variable to write the state into.
* @return uint8_t Returns 1 if successful, 0 otherwise.
*/
uint8_t readStatusRegister(uint8_t regID, uint8_t * status_byte);
/**
* @brief Write into one of the chip's status registers.
*
* @param regID The ID of the status register. Can only be 1, 2 or 3.
* @param status_byte The byte to write into the status register.
* @param nonvolatile If set to true, this setting will be restored after power off.
* @return uint8_t Returns 1 if successful, 0 otherwise.
*/
uint8_t writeStatusRegister(uint8_t regID, uint8_t * status_byte, bool nonvolatile = false);
/**
* @brief Checks if the flash is busy writing or erasing.
*
* @return bool Returns true if the flash is busy, false otherwise.
*/
bool isBusy();
public:
/*
* Read / Write operations
@ -218,10 +181,10 @@ namespace sta
* @remarks Afterwards, the device won't accept any instructions for a duration T_SE. This can be checked
* by reading the busy bit.
*
* @param address The address of the sector to erase.
* @param address The number of the sector to erase. Here, 0 is the first sector, 1 the second and so on.
* @return bool Returns 1 if the operation was successful, 0 otherwise.
*/
uint8_t sectorErase(uint32_t address);
uint8_t sectorErase(uint32_t address, bool blocking = false);
/**
* @brief Sets all memory within a specified block (32/64 KByte) to 1s.
@ -315,9 +278,28 @@ namespace sta
uint8_t writeVolatileEnable();
/**
* @brief Read one of the flash's status registers.
*
* @param regID The ID of the status register. Can only be 1, 2 or 3.
* @param status_byte A pointer to the variable to write the state into.
* @return uint8_t Returns 1 if successful, 0 otherwise.
*/
uint8_t readStatusRegister(uint8_t regID, uint8_t * status_byte);
/**
* @brief Write into one of the chip's status registers.
*
* @param regID The ID of the status register. Can only be 1, 2 or 3.
* @param status_byte The byte to write into the status register.
* @param nonvolatile If set to true, this setting will be restored after power off.
* @return uint8_t Returns 1 if successful, 0 otherwise.
*/
uint8_t writeStatusRegister(uint8_t regID, uint8_t * status_byte, bool nonvolatile = false);
private:
SPIDevice * device_;
DelayUsFunc delay_;
Mutex * mutex_;
ChipState state_;
AddressMode addrMode_;
};

View File

@ -39,12 +39,14 @@
#define W25QXX_PAGE_PROGAM 0x02
#define W25QXX_QUAD_PAGE_PROGAM 0x32
#define W25QXX_SECTOR_ERASE 0x21
#define W25QXX_SECTOR_ERASE 0x20
#define W25QXX_BLOCK_ERASE_32_KB 0x52
#define W25QXX_BLOCK_ERASE_64_KB 0xD8
#define W25QXX_READ 0x03
#define W25QXX_READ_32_BIT 0x13
#define W25QXX_FAST_READ 0x0B
#define W25QXX_FAST_READ_32_BIT 0x0C
#define W25QXX_FAST_READ_DUAL_OUT 0x3B
#define W25QXX_FAST_READ_QUAD_OUT 0x6B
#define W25QXX_SFDP_REG 0x5A
@ -61,6 +63,7 @@
#define W25QXX_PAGE_SIZE 0x100
#define W25QXX_SECTOR_SIZE 0x1000
#define W25QXX_PAGE_PER_SECTOR 0x10
#define W25QXX_BLOCK_32_KB_SIZE 0x8000
#define W25QXX_BLOCK_64_KB_SIZE 0xF000

View File

@ -0,0 +1,103 @@
#ifndef STA_UTILS_LOGGER_HPP
#define STA_UTILS_LOGGER_HPP
#include <sta/drivers/w25qxx.hpp>
#include <sta/debug/assert.hpp>
#include <cstring>
namespace sta
{
template <typename T>
class Logger
{
public:
/**
* @brief Constructs a logger object which manages reading and writing data to a segment of a flash chip.
*
* @param flash The flash chip to use for logging.
* @param startSector The index of the start sector (1 LSB = 4096 bytes).
* @param endSector The index of the end sector (1 LSB = 4096 bytes).
*/
Logger(W25Qxx * flash, uint32_t startSector, uint32_t endSector);
/**
* @brief Write a new data point to the flash chip as long as the segment's limit wasn't reached.
*
* @param data A pointer to the data to write to the flash chip.
* @return true if successful, false if the segment end was reached.
*/
bool write(T* data);
/**
* @brief Write a new data point to the flash chip as long as the segment's limit wasn't reached.
*
* @param data The data to write to the flash chip.
* @return true if successful, false if the segment end was reached.
*/
bool write(T data);
/**
* @brief Clear the flash memory used by the logger.
*
*/
void clear();
/**
* @brief Get the number of data points currently written to the memory segment.
*
* @return size_t The number of data points.
*/
size_t count();
/**
* @brief Get the number of data points that can be written to the logger before an overflow occurs.
*
* @return size_t The number of data points.
*/
size_t remaining();
/**
* @brief Get the total number of data points that fit into the logger.
*
* @return size_t The number of data points.
*/
size_t capacity();
/**
* @brief Get the ith element stored in the flash storage.
*
* @param i The index of the element to read.
* @return T The ith element stored in the flash storage.
*/
T get(std::size_t i);
private:
/**
* @brief Find the first sector in the segment that was not written yet.
*
*/
void findLast();
/**
* @brief A method that checks if a page is empty
*
* @param buffer A buffer of size 256 containing data from a page.
* @return true if the page is empty, false otherwise.
*/
bool searchCriterion(uint8_t * buffer);
private:
W25Qxx * flash_;
uint32_t start_;
uint32_t end_;
uint32_t address_;
uint8_t buffer_[W25QXX_PAGE_SIZE];
bool flushed_;
uint32_t ptr_;
};
} // namespace sta
#include <sta/utils/logger.tpp>
#endif // STA_UTILS_LOGGER_HPP

View File

@ -0,0 +1,205 @@
#ifndef STA_UTILS_LOGGER_TPP
#define STA_UTILS_LOGGER_TPP
#include <sta/debug/debug.hpp>
#include <sta/drivers/w25qxx.hpp>
namespace sta
{
template <typename T>
Logger<T>::Logger(W25Qxx * flash, uint32_t startSec, uint32_t endSec)
: flash_{flash},
start_{startSec},
end_{endSec},
address_{start_ * W25QXX_SECTOR_SIZE},
buffer_{0x00, },
flushed_{false},
ptr_ {0}
{
STA_ASSERT(flash != nullptr);
STA_ASSERT(endSec > startSec);
// Jump to the last written page.
findLast();
}
template <typename T>
bool Logger<T>::searchCriterion(uint8_t * buffer)
{
for (size_t i = 0; i < W25QXX_PAGE_SIZE; i++)
{
if (buffer[i] != 0xFF)
{
return false;
}
}
return true;
}
template <typename T>
void Logger<T>::findLast()
{
uint32_t left = start_;
uint32_t right = end_+1;
uint32_t middle;
uint8_t * buffer = new uint8_t[256];
while (left <= right)
{
middle = (left + right) / 2;
flash_->readData(middle * W25QXX_SECTOR_SIZE, buffer, W25QXX_PAGE_SIZE);
if (middle == 0 && searchCriterion(buffer))
{
break;
}
if (searchCriterion(buffer))
{
if (middle == 0)
{
break;
}
flash_->readData((middle-1) * W25QXX_SECTOR_SIZE, buffer, W25QXX_PAGE_SIZE);
if (!searchCriterion(buffer))
{
break;
}
right = middle;
}
else
{
left = middle + 1;
}
}
middle = (left + right) / 2;
delete[] buffer;
address_ = middle * W25QXX_SECTOR_SIZE;
ptr_ = 0;
}
template <typename T>
bool Logger<T>::write(T* data)
{
// If writing the data would exceed the segment length, return false and don't do anything.
if ((address_ + ptr_ + sizeof(T)) / W25QXX_SECTOR_SIZE >= end_)
{
// If the current page hasn't been uploaded yet, do it now.
if (!flushed_)
{
flash_->pageProgram(address_, buffer_, W25QXX_PAGE_SIZE);
flushed_ = true;
}
return false;
}
// Convert the data to a byte array.
uint8_t * bytes = reinterpret_cast<uint8_t*>(data);
uint32_t length = sizeof(T);
// If the written data exceeds the remaining bytes in the page.
while (ptr_ + length >= W25QXX_PAGE_SIZE)
{
// Bytes remaining until the page is full.
uint32_t remaining = W25QXX_PAGE_SIZE - ptr_;
// If the page to written is in a new sector, erase the new sector before writing to it.
if (address_ % W25QXX_SECTOR_SIZE == 0)
{
flash_->sectorErase(address_);
}
std::memcpy(buffer_ + ptr_, bytes, remaining);
flash_->pageProgram(address_, buffer_, W25QXX_PAGE_SIZE);
bytes += remaining;
length -= remaining;
ptr_ = 0;
address_ += W25QXX_PAGE_SIZE;
}
std::memcpy(buffer_ + ptr_, bytes, length);
ptr_ += length;
return true;
}
template <typename T>
bool Logger<T>::write(T data)
{
return write(&data);
}
template <typename T>
void Logger<T>::clear()
{
uint32_t left = start_;
uint32_t right = end_+1;
uint32_t middle;
// Erase all sectors the binary search would check when trying to find the last written page.
while (left <= right)
{
middle = (left + right) / 2;
flash_->sectorErase(middle * W25QXX_SECTOR_SIZE, true);
right = middle;
if (middle == 0)
break;
flash_->sectorErase((middle-1) * W25QXX_SECTOR_SIZE, true);
}
middle = (left + right) / 2;
flash_->sectorErase(middle * W25QXX_SECTOR_SIZE, true);
address_ = start_ * W25QXX_SECTOR_SIZE;
ptr_ = 0;
flushed_ = false;
}
template <typename T>
size_t Logger<T>::count()
{
return ((address_ + ptr_) - start_ * W25QXX_SECTOR_SIZE) / sizeof(T);
}
template <typename T>
size_t Logger<T>::remaining()
{
return (end_ * W25QXX_SECTOR_SIZE - (address_ + ptr_)) / sizeof(T);
}
template <typename T>
size_t Logger<T>::capacity()
{
return (end_ - start_) * W25QXX_SECTOR_SIZE / sizeof(T);
}
template <typename T>
T Logger<T>::get(std::size_t i)
{
uint32_t address = start_ * W25QXX_SECTOR_SIZE + i * sizeof(T);
// If the requested element is in the cache, read it from there.
if (address / W25QXX_PAGE_SIZE == address_ / W25QXX_PAGE_SIZE)
{
uint8_t * ptr = buffer_ + address % W25QXX_PAGE_SIZE;
return *reinterpret_cast<T*>(ptr);
}
else
{
uint8_t buffer[sizeof(T)];
flash_->readData(address, buffer, sizeof(T));
return *reinterpret_cast<T*>(buffer);
}
}
} // namespace sta
#endif // STA_UTILS_LOGGER_TPP

View File

@ -9,17 +9,21 @@
namespace sta
{
W25Qxx::W25Qxx(SPIDevice * device, DelayUsFunc delay, AddressMode addrMode /* = AddressMode::_24BIT */)
W25Qxx::W25Qxx(SPIDevice * device, DelayUsFunc delay, AddressMode addrMode /* = AddressMode::_24BIT */, Mutex * mutex /* = Mutex::ALWAYS_FREE */)
: device_{device},
delay_{delay},
mutex_{mutex},
state_{ChipState::POWERED_DOWN},
addrMode_{addrMode}
{
STA_ASSERT(device != nullptr);
STA_ASSERT(mutex != nullptr);
}
uint8_t W25Qxx::init()
{
lock_guard<Mutex>lock(*mutex_);
powerDown();
delay_(5);
@ -46,69 +50,9 @@ namespace sta
return 1;
}
uint32_t W25Qxx::getChunkBytes(ChunkSize size)
{
switch (size)
{
case ChunkSize::PAGE:
return W25QXX_PAGE_SIZE;
case ChunkSize::SECTOR:
return W25QXX_SECTOR_SIZE;
case ChunkSize::BLOCK_32KB:
return W25QXX_BLOCK_32_KB_SIZE;
case ChunkSize::BLOCK_64KB:
return W25QXX_BLOCK_64_KB_SIZE;
default:
STA_UNREACHABLE();
break;
}
}
uint32_t W25Qxx::findLast(std::function<bool(uint8_t*)> criterion, ChunkSize size)
{
uint32_t bytes = getChunkBytes(size);
uint32_t left = 0;
uint32_t right = (addrMode_ == AddressMode::_32BIT ? W25QXX_32B_MEM_SIZE : W25QXX_24B_MEM_SIZE) / bytes;
uint32_t middle;
uint8_t * buffer = new uint8_t[bytes];
while (left < right)
{
middle = (left + right) / 2;
STA_DEBUG_PRINTF("left=%d, middle=%d, right=%d", left, middle, right);
readData(middle * bytes, buffer, bytes);
if (criterion(buffer))
{
left = middle + 1;
}
else
{
right = middle - 1;
}
}
middle = (left + right) / 2;
readData(middle * bytes, buffer, bytes);
if (criterion(buffer))
{
middle += 1;
}
delete[] buffer;
return middle * bytes;
}
uint8_t W25Qxx::setAddressMode(AddressMode addrMode)
{
lock_guard<Mutex>lock(*mutex_);
busWrite(W25QXX_4_BYTE_ADDR_ENABLE);
while (isBusy()) {}
@ -118,6 +62,8 @@ namespace sta
AddressMode W25Qxx::getAddressMode()
{
lock_guard<Mutex>lock(*mutex_);
uint8_t status;
readStatusRegister(3, &status);
@ -126,6 +72,8 @@ namespace sta
uint8_t W25Qxx::getChipID()
{
lock_guard<Mutex>lock(*mutex_);
uint8_t buffer[4];
busRead(W25QXX_RELEASE_POWER_DOWN, buffer, 3);
@ -134,6 +82,8 @@ namespace sta
uint8_t W25Qxx::getManufacturerID()
{
lock_guard<Mutex>lock(*mutex_);
uint8_t dummy[3] = {0, 0, 0};
uint8_t id[2] = {0, 0};
@ -144,6 +94,8 @@ namespace sta
uint64_t W25Qxx::getUniqueID()
{
lock_guard<Mutex>lock(*mutex_);
uint8_t dummy[4];
uint8_t id[8];
@ -151,7 +103,7 @@ namespace sta
uint64_t id_complete = 0;
for (size_t i; i < 8; i++)
for (size_t i = 0; i < 8; i++)
{
id_complete |= id[i] << (7-i) * 8;
}
@ -161,6 +113,8 @@ namespace sta
bool W25Qxx::isBusy()
{
lock_guard<Mutex>lock(*mutex_);
uint8_t status = 0;
readStatusRegister(1, &status);
@ -169,20 +123,30 @@ namespace sta
uint8_t W25Qxx::readData(uint32_t address, uint8_t * buffer, size_t length, bool fast /* = true */)
{
uint8_t instruction = fast ? W25QXX_FAST_READ : W25QXX_READ;
lock_guard<Mutex>lock(*mutex_);
// In fast mode we have to send a 8 dummy clock cycles first.
if (fast)
{
// TODO
}
uint8_t instruction = fast ? W25QXX_FAST_READ : W25QXX_READ;
while (isBusy()) {}
// Depending on address mode, send 3 bytes or 4 bytes.
if (addrMode_ == AddressMode::_32BIT)
{
uint8_t addrBuffer[4] = {
if (fast)
{
uint8_t addrBuffer[5] = {
(uint8_t) (address >> 24),
(uint8_t) (address >> 16),
(uint8_t) (address >> 8),
(uint8_t) (address),
0x00 // Dummy byte for fast mode
};
return busRead(instruction, buffer, length, addrBuffer, 5);
}
else
{
uint8_t addrBuffer[5] = {
(uint8_t) (address >> 24),
(uint8_t) (address >> 16),
(uint8_t) (address >> 8),
@ -191,6 +155,7 @@ namespace sta
return busRead(instruction, buffer, length, addrBuffer, 4);
}
}
else
{
if (fast)
@ -219,6 +184,8 @@ namespace sta
uint8_t W25Qxx::pageProgram(uint32_t address, uint8_t * buffer, size_t length)
{
lock_guard<Mutex>lock(*mutex_);
STA_ASSERT(length <= W25QXX_PAGE_SIZE);
while (isBusy()) {}
@ -254,6 +221,8 @@ namespace sta
uint8_t W25Qxx::sectorProgram(uint32_t address, uint8_t * buffer, size_t length)
{
lock_guard<Mutex>lock(*mutex_);
STA_ASSERT(length <= W25QXX_SECTOR_SIZE);
uint32_t nPages = length / W25QXX_PAGE_SIZE;
@ -399,8 +368,15 @@ namespace sta
return (0x02 & status) == 0x02;
}
uint8_t W25Qxx::sectorErase(uint32_t address)
uint8_t W25Qxx::sectorErase(uint32_t address, bool blocking /* = false */)
{
if (address % W25QXX_SECTOR_SIZE != 0)
{
return 0;
}
while (isBusy()) {}
if (!writeEnable())
{
return 0;
@ -430,11 +406,16 @@ namespace sta
return busWrite(W25QXX_SECTOR_ERASE, addrBuffer, 3);
}
if (blocking)
delay_(200*1000);
return 1;
}
uint8_t W25Qxx::blockErase(uint32_t address, BlockSize blockSize)
{
while (isBusy()) {}
if (!writeEnable())
{
return 0;