driver-ms56xx/src/MS5607.cpp
2023-05-11 13:57:05 +02:00

223 lines
7.2 KiB
C++

#include "sta/MS5607.hpp"
namespace sta {
// Forward declaration
uint16_t uint_8BufferTouint16_t(uint8_t* buffer);
MS5607::MS5607(SpiDevice* device, OsrLevel level) {
this->device_ = device;
this->osr_ = level;
this->lastPresVal = -1;
this->adcStartTime = -1;
this->presRead = true;
// Reset device on start-up
this->reset();
// Read the PROM e.g. constants
this->readPROM();
}
void MS5607::requestAdcReadout(uint32_t time) {
// Get current state of calculation
if (time-adcStartTime < delayTimes(this->osr_) || !presRead) {
// Time since last adc command is not enough
return;
}
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::D1_CONVERSION + 2*this->osr_);
this->device_->endTransmission();
adcStartTime = time;
presRead = false;
}
int32_t MS5607::getPressure(int32_t temp, uint32_t time) {
if (time-adcStartTime < delayTimes(this->osr_) || presRead) {
// Time since last adc command is not enough
return lastPresVal;
}
uint8_t buffer[3] = { 0 };
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::ADC_RESULT);
this->device_->receive(buffer, 3);
this->device_->endTransmission();
this->presRead = true;
uint32_t d1_val = buffer[0] << 16 | buffer[1] << 8 | buffer[2];
this->requestAdcReadout(time);
return calculatePressure(d1_val, reverseTempCalc(temp));
}
int32_t MS5607::reverseTempCalc(int32_t temp) {
return this->tempsens;
}
// DEPRECATED
int32_t MS5607::getPressure() {
// Get pure ADC value from the sensor
uint32_t d1 = readPressure();
// Since pressure is temp-dependant, temperature needs to be polled
// Could be too costly timewise, since 8ms is needed for the ADC
// May need future optimisation
uint32_t d2 = readTemp();
int32_t dT = d2 - ( ((uint32_t)this->t_ref) << 8);
return calculatePressure(d1, dT);
}
// DON'T USE
uint32_t MS5607::readPressure() {
// Request pressure value conversion
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::D1_CONVERSION + 2*this->osr_);
this->device_->endTransmission();
// Wait for ADC to finish
// Could do sth. else and schedule continuation with scheduler in RTOS
// TODO: Find out min
sta::delayMs(10);
// Request readout of ADC value
uint8_t d1Arr[3];
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::ADC_RESULT);
this->device_->receive(d1Arr, 3);
this->device_->endTransmission();
// Convert into best possible type
uint32_t res = 0;
// Shifting may not be necessary, but idk w/o testing
res |= d1Arr[0] | (d1Arr[1] << 8) | (d1Arr[2] << 16);
return res;
}
// Calculations from the Datasheet
// Probably problems with type conversions
// If we used Rust...
int32_t MS5607::calculatePressure(uint32_t d1, int32_t dT) {
int64_t offset = ( ((uint64_t)this->off) << 17) + ( ( ((uint64_t)this->tco) * dT ) >> 6);
int64_t sensitivity = ( ((uint64_t)this->sens) << 16) + ( ( ((uint64_t)this->tcs) * dT ) >> 7);
int32_t pres = ( (( ((uint64_t)d1) * sensitivity) >> 21) - offset ) >> 15;
return pres;
}
// NOT RECOMMENDED
// USE TEMP FROM SCA3300 OR STH. ELSE
int32_t MS5607::getTemperature() {
// Get pure ADC value from the sensor
uint32_t d2 = readTemp();
return calculateTemperature(d2);
}
// OLD; DON'T USE
uint32_t MS5607::readTemp() {
// Request ADC conversion of temperature
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::D2_CONVERSION + 2*this->osr_);
this->device_->endTransmission();
// Wait for ADC to finish
// Could do sth. else and schedule continuation with scheduler in RTOS
// TODO: Test out min
sta::delayMs(10);
// Request ADC readout
uint8_t d2Arr[3];
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::ADC_RESULT);
this->device_->receive(d2Arr, 3);
this->device_->endTransmission();
// Convert into best possible type
uint32_t res = 0;
// Shifting may be unnecessary? Don't know really w/o testing
res |= d2Arr[0] | d2Arr[1] << 8 | d2Arr[2] << 16;
return res;
}
// Calculations from the Datasheet
// Probably problems with type conversions
// If we used Rust...
int32_t MS5607::calculateTemperature(uint32_t d2) {
int32_t dT = d2 - ( ((uint32_t)this->t_ref) << 8);
int32_t temp = 2000 + ((dT * ((uint32_t)this->tempsens)) >> 23);
// Further calculations for low (<20) and very low (<(-15)) could be possible
// But I don't know whether they are necessary
return temp;
}
// Reset sequence as described in datasheet
void MS5607::reset() {
this->device_->beginTransmission();
this->device_->transfer(MS5607::Operations::RESET);
this->device_->endTransmission();
delayUs(MS5607::RESET_DELAY);
}
// Read all constants from the PROM
// May be moved to be called in reset() function in future
// Request value x -> Read value x; Then request value y etc.
// Could be optimized; Not as important since only needed once at start-up
void MS5607::readPROM() {
this->device_->beginTransmission();
this->device_->transfer(Operations::READ_PROM);
uint8_t sensArr[2];
this->device_->receive(sensArr, 2);
this->sens = uint_8BufferTouint16_t(sensArr);
pulseCS();
this->device_->transfer(Operations::READ_PROM+2);
uint8_t offArr[2];
this->device_->receive(offArr, 2);
this->off = uint_8BufferTouint16_t(offArr);
pulseCS();
this->device_->transfer(Operations::READ_PROM+4);
uint8_t tcsArr[2];
this->device_->receive(tcsArr, 2);
this->sens = uint_8BufferTouint16_t(sensArr);
pulseCS();
this->device_->transfer(Operations::READ_PROM+6);
uint8_t tcoArr[2];
this->device_->receive(tcoArr, 2);
this->tco = uint_8BufferTouint16_t(tcoArr);
pulseCS();
this->device_->transfer(Operations::READ_PROM+8);
uint8_t t_refArr[2];
this->device_->receive(t_refArr, 2);
this->t_ref = uint_8BufferTouint16_t(t_refArr);
pulseCS();
this->device_->transfer(Operations::READ_PROM+0xA);
uint8_t tempsensArr[2];
this->device_->receive(tempsensArr, 2);
this->tempsens = uint_8BufferTouint16_t(tempsensArr);
this->device_->endTransmission();
}
// Helper function:
// Take first bytes from buffer, swap them and store those in uint16_t
// Swap may not be necessary
uint16_t uint_8BufferTouint16_t(uint8_t* buffer) {
return (buffer[0] << 8) | buffer[1];
}
}