/* * Copyright © 2009 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #define _GNU_SOURCE #include #include #include #include #include #include "cc-usb.h" #include "cc.h" #include static const char *state_names[] = { "startup", "idle", "pad", "boost", "fast", "coast", "drogue", "main", "landed", "invalid" }; static const char *kml_state_colours[] = { "FF000000", "FF000000", "FF000000", "FF0000FF", "FF4080FF", "FF00FFFF", "FFFF0000", "FF00FF00", "FF000000", "FFFFFFFF" }; static int plot_colors[3][3] = { { 0, 0x90, 0 }, /* height */ { 0xa0, 0, 0 }, /* speed */ { 0, 0, 0xc0 }, /* accel */ }; #define PLOT_HEIGHT 0 #define PLOT_SPEED 1 #define PLOT_ACCEL 2 static void plot_perioddata(struct cc_perioddata *d, char *axis_label, char *plot_label, double min_time, double max_time, int plot_type) { double *times; double ymin, ymax; int ymin_i, ymax_i; int i; int start, stop; if (!cc_perioddata_limits(d, min_time, max_time, &start, &stop)) return; times = calloc(stop - start + 1, sizeof (double)); for (i = start; i <= stop; i++) times[i-start] = i * d->step / 100.0; ymin_i = cc_perioddata_min(d, min_time, max_time); ymax_i = cc_perioddata_max(d, min_time, max_time); ymin = d->data[ymin_i]; ymax = d->data[ymax_i]; plscol0(1, 0, 0, 0); plscol0(2, plot_colors[plot_type][0], plot_colors[plot_type][1], plot_colors[plot_type][2]); plcol0(1); plenv(times[0], times[stop-start], ymin, ymax, 0, 2); pllab("Time", axis_label, plot_label); plcol0(2); plline(stop - start + 1, times, d->data + start); free(times); } static void plot_timedata(struct cc_timedata *d, char *axis_label, char *plot_label, double min_time, double max_time, int plot_type) { double *times; double *values; double ymin, ymax; int ymin_i, ymax_i; int i; int start = -1, stop = -1; double start_time = 0, stop_time = 0; int num; for (i = 0; i < d->num; i++) { if (start < 0 && d->data[i].time >= min_time) { start_time = d->data[i].time; start = i; } if (d->data[i].time <= max_time) { stop_time = d->data[i].time; stop = i; } } times = calloc(stop - start + 1, sizeof (double)); values = calloc(stop - start + 1, sizeof (double)); ymin_i = cc_timedata_min(d, min_time, max_time); ymax_i = cc_timedata_max(d, min_time, max_time); ymin = d->data[ymin_i].value; ymax = d->data[ymax_i].value; for (i = start; i <= stop; i++) { times[i-start] = (d->data[i].time - start_time)/100.0; values[i-start] = d->data[i].value; } plscol0(1, 0, 0, 0); plscol0(2, plot_colors[plot_type][0], plot_colors[plot_type][1], plot_colors[plot_type][2]); plcol0(1); plenv(times[0], times[stop-start], ymin, ymax, 0, 2); pllab("Time", axis_label, plot_label); plcol0(2); plline(stop - start + 1, times, values); free(times); free(values); } static struct cc_perioddata * merge_data(struct cc_perioddata *first, struct cc_perioddata *last, double split_time) { int i; struct cc_perioddata *pd; int num; double start_time, stop_time; double t; pd = calloc(1, sizeof (struct cc_perioddata)); start_time = first->start; stop_time = last->start + last->step * last->num; num = (stop_time - start_time) / first->step; pd->num = num; pd->data = calloc(num, sizeof (double)); pd->start = first->start; pd->step = first->step; for (i = 0; i < num; i++) { t = pd->start + i * pd->step; if (t <= split_time) { pd->data[i] = first->data[i]; } else { int j; j = (t - last->start) / last->step; if (j < 0 || j >= last->num) pd->data[i] = 0; else pd->data[i] = last->data[j]; } } return pd; } static const char kml_header_start[] = "\n" "\n" "\n" " %s\n" " \n"; static const char kml_header_end[] = " \n" " 0\n"; static const char kml_style_start[] = " \n"; static const char kml_placemark_start[] = " \n" " %s\n" " #ao-flightstate-%s\n" " \n" " 1\n" " absolute\n" " \n"; static const char kml_coord_fmt[] = " %12.7f, %12.7f, %12.7f \n"; static const char kml_placemark_end[] = " \n" " \n" " \n"; static const char kml_footer[] = " \n" " \n" " \n" "\n" "\n"; static unsigned gps_daytime(struct cc_gpselt *gps) { return ((gps->hour * 60 + gps->minute) * 60 + gps->second) * 1000; } int daytime_hour(unsigned daytime) { return daytime / 1000 / 60 / 60; } int daytime_minute(unsigned daytime) { return (daytime / 1000 / 60) % 60; } int daytime_second(unsigned daytime) { return (daytime / 1000) % 60; } int daytime_millisecond(unsigned daytime) { return daytime % 1000; } static unsigned compute_daytime_ms(double time, struct cc_gpsdata *gps) { int i; unsigned gps_start_daytime, gps_stop_daytime; if (time <= gps->data[0].time) { gps_stop_daytime = gps_daytime(&gps->data[0]); return gps_stop_daytime - (gps->data[0].time - time) * 10; } for (i = 0; i < gps->num - 1; i++) if (time > gps->data[i].time) break; gps_start_daytime = gps_daytime(&gps->data[i]); if (i == gps->num - 1) { return gps_start_daytime + (time - gps->data[i].time) * 10; } else { unsigned gps_period_daytime; double gps_period_time; double time_since_start; gps_stop_daytime = gps_daytime(&gps->data[i + 1]); /* range of gps daytime values */ gps_period_daytime = gps_stop_daytime - gps_start_daytime; /* range of gps time values */ gps_period_time = gps->data[i+1].time - gps->data[i].time; /* sample time after first gps time */ time_since_start = time - gps->data[i].time; return gps_start_daytime + gps_period_daytime * time_since_start / gps_period_time; } } static void analyse_flight(struct cc_flightraw *f, FILE *summary_file, FILE *detail_file, FILE *raw_file, char *plot_name, FILE *gps_file, FILE *kml_file) { double height; double accel; double speed; double avg_speed; double boost_start, boost_stop; double min_pres; int i; int pres_i, accel_i, speed_i; int boost_start_set = 0; int boost_stop_set = 0; enum ao_flight_state state; double state_start, state_stop; struct cc_flightcooked *cooked; double apogee; char buf[128]; if (kml_file) { snprintf(buf, sizeof (buf), "AO Flight#%d S/N: %03d", f->flight, f->serial); fprintf(kml_file, kml_header_start, buf); } fprintf(summary_file, "Serial: %9d\n" "Flight: %9d\n", f->serial, f->flight); if (f->year) { snprintf(buf, sizeof (buf), "Date: %04d-%02d-%02d\n", f->year, f->month, f->day); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } if (f->gps.num) { snprintf(buf, sizeof (buf), "Time: %2d:%02d:%02d\n", f->gps.data[0].hour, f->gps.data[0].minute, f->gps.data[0].second); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } boost_start = f->accel.data[0].time; boost_stop = f->accel.data[f->accel.num-1].time; for (i = 0; i < f->state.num; i++) { if (f->state.data[i].value == ao_flight_boost && !boost_start_set) { boost_start = f->state.data[i].time; boost_start_set = 1; } if (f->state.data[i].value > ao_flight_boost && !boost_stop_set) { boost_stop = f->state.data[i].time; boost_stop_set = 1; } } pres_i = cc_timedata_min(&f->pres, f->pres.data[0].time, f->pres.data[f->pres.num-1].time); if (pres_i >= 0) { min_pres = f->pres.data[pres_i].value; height = cc_barometer_to_altitude(min_pres) - cc_barometer_to_altitude(f->ground_pres); apogee = f->pres.data[pres_i].time; snprintf(buf, sizeof (buf), "Max height: %9.2fm %9.2fft %9.2fs\n", height, height * 100 / 2.54 / 12, (f->pres.data[pres_i].time - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } cooked = cc_flight_cook(f); if (cooked) { speed_i = cc_perioddata_max(&cooked->accel_speed, boost_start, boost_stop); if (speed_i >= 0) { speed = cooked->accel_speed.data[speed_i]; snprintf(buf, sizeof (buf), "Max speed: %9.2fm/s %9.2fft/s %9.2fs\n", speed, speed * 100 / 2.4 / 12.0, (cooked->accel_speed.start + speed_i * cooked->accel_speed.step - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } } accel_i = cc_timedata_min(&f->accel, boost_start, boost_stop); if (accel_i >= 0) { accel = cc_accelerometer_to_acceleration(f->accel.data[accel_i].value, f->ground_accel); snprintf(buf, sizeof (buf), "Max accel: %9.2fm/s² %9.2fg %9.2fs\n", accel, accel / 9.80665, (f->accel.data[accel_i].time - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } if (kml_file) fprintf(kml_file, "%s", kml_header_end); for (i = 0; i < f->state.num; i++) { state = f->state.data[i].value; state_start = f->state.data[i].time; while (i < f->state.num - 1 && f->state.data[i+1].value == state) i++; if (i < f->state.num - 1) state_stop = f->state.data[i + 1].time; else state_stop = f->accel.data[f->accel.num-1].time; fprintf(summary_file, "State: %s\n", state_names[state]); fprintf(summary_file, "\tStart: %9.2fs\n", (state_start - boost_start) / 100.0); fprintf(summary_file, "\tDuration: %9.2fs\n", (state_stop - state_start) / 100.0); if (kml_file) { fprintf(kml_file, kml_style_start, state_names[state], kml_state_colours[state]); fprintf(kml_file, "\tState: %s\n", state_names[state]); fprintf(kml_file, "\tStart: %9.2fs\n", (state_start - boost_start) / 100.0); fprintf(kml_file, "\tDuration: %9.2fs\n", (state_stop - state_start) / 100.0); } accel_i = cc_timedata_min(&f->accel, state_start, state_stop); if (accel_i >= 0) { accel = cc_accelerometer_to_acceleration(f->accel.data[accel_i].value, f->ground_accel); snprintf(buf, sizeof (buf), "\tMax accel: %9.2fm/s² %9.2fg %9.2fs\n", accel, accel / 9.80665, (f->accel.data[accel_i].time - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } if (cooked) { if (state < ao_flight_drogue) { speed_i = cc_perioddata_max_mag(&cooked->accel_speed, state_start, state_stop); if (speed_i >= 0) speed = cooked->accel_speed.data[speed_i]; avg_speed = cc_perioddata_average(&cooked->accel_speed, state_start, state_stop); } else { speed_i = cc_perioddata_max_mag(&cooked->pres_speed, state_start, state_stop); if (speed_i >= 0) speed = cooked->pres_speed.data[speed_i]; avg_speed = cc_perioddata_average(&cooked->pres_speed, state_start, state_stop); } if (speed_i >= 0) { snprintf(buf, sizeof (buf), "\tMax speed: %9.2fm/s %9.2fft/s %9.2fs\n", speed, speed * 100 / 2.4 / 12.0, (cooked->accel_speed.start + speed_i * cooked->accel_speed.step - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); snprintf(buf, sizeof (buf), "\tAvg speed: %9.2fm/s %9.2fft/s\n", avg_speed, avg_speed * 100 / 2.4 / 12.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } } pres_i = cc_timedata_min(&f->pres, state_start, state_stop); if (pres_i >= 0) { min_pres = f->pres.data[pres_i].value; height = cc_barometer_to_altitude(min_pres) - cc_barometer_to_altitude(f->ground_pres); snprintf(buf, sizeof (buf), "\tMax height: %9.2fm %9.2fft %9.2fs\n", height, height * 100 / 2.54 / 12, (f->pres.data[pres_i].time - boost_start) / 100.0); fprintf(summary_file, "%s", buf); if (kml_file) fprintf(kml_file, "%s", buf); } if (kml_file) fprintf(kml_file, "%s", kml_style_end); } if (cooked && detail_file) { double max_height = 0; int i; double *times; fprintf(detail_file, "%9s %9s %9s %9s %9s\n", "time", "height", "speed", "accel", "daytime"); for (i = 0; i < cooked->pres_pos.num; i++) { double clock_time = cooked->accel_accel.start + i * cooked->accel_accel.step; double time = (clock_time - boost_start) / 100.0; double accel = cooked->accel_accel.data[i]; double pos = cooked->pres_pos.data[i]; double speed; unsigned daytime; if (cooked->pres_pos.start + cooked->pres_pos.step * i < apogee) speed = cooked->accel_speed.data[i]; else speed = cooked->pres_speed.data[i]; if (f->gps.num) daytime = compute_daytime_ms(clock_time, &f->gps); else daytime = 0; fprintf(detail_file, "%9.2f %9.2f %9.2f %9.2f %02d:%02d:%02d.%03d\n", time, pos, speed, accel, daytime_hour(daytime), daytime_minute(daytime), daytime_second(daytime), daytime_millisecond(daytime)); } } if (raw_file) { fprintf(raw_file, "%9s %9s %9s %9s\n", "time", "height", "accel", "daytime"); for (i = 0; i < cooked->pres.num; i++) { double time = cooked->pres.data[i].time; double pres = cooked->pres.data[i].value; double accel = cooked->accel.data[i].value; unsigned daytime; if (f->gps.num) daytime = compute_daytime_ms(time, &f->gps); else daytime = 0; fprintf(raw_file, "%9.2f %9.2f %9.2f %02d:%02d:%02d.%03d\n", time, pres, accel, daytime_hour(daytime), daytime_minute(daytime), daytime_second(daytime), daytime_millisecond(daytime)); } } if (gps_file || kml_file) { int j = 0, baro_pos; double baro_offset; double baro = 0.0; int state_idx = 0; if (gps_file) fprintf(gps_file, "%2s %2s %2s %9s %12s %12s %9s %8s %5s\n", "hr", "mn", "sc", "time", "lat", "lon", "alt", "baro", "nsat"); if (kml_file) fprintf(kml_file, kml_placemark_start, state_names[(int)f->state.data[state_idx].value], state_names[(int)f->state.data[state_idx].value]); if (f->gps.num) baro_offset = f->gps.data[0].alt; else baro_offset = 0; baro_pos = 0; for (i = 0; i < f->gps.num; i++) { int nsat = 0; int k; while (j < f->gps.numsats - 1) { if (f->gps.sats[j].sat[0].time <= f->gps.data[i].time && f->gps.data[i].time < f->gps.sats[j+1].sat[0].time) break; j++; } if (cooked) { while (baro_pos < cooked->pres_pos.num) { double baro_time = cooked->accel_accel.start + baro_pos * cooked->accel_accel.step; if (baro_time >= f->gps.data[i].time) break; baro_pos++; } if (baro_pos < cooked->pres_pos.num) baro = cooked->pres_pos.data[baro_pos]; } if (gps_file) fprintf(gps_file, "%2d %2d %2d %12.7f %12.7f %12.7f %7.1f %7.1f", f->gps.data[i].hour, f->gps.data[i].minute, f->gps.data[i].second, (f->gps.data[i].time - boost_start) / 100.0, f->gps.data[i].lat, f->gps.data[i].lon, f->gps.data[i].alt, baro + baro_offset); nsat = 0; if (f->gps.sats) { for (k = 0; k < f->gps.sats[j].nsat; k++) { if (f->gps.sats[j].sat[k].svid != 0) nsat++; } if (gps_file) { fprintf(gps_file, " %4d", nsat); for (k = 0; k < f->gps.sats[j].nsat; k++) { if (f->gps.sats[j].sat[k].svid != 0) { fprintf (gps_file, " %3d(%4.1f)", f->gps.sats[j].sat[k].svid, (double) f->gps.sats[j].sat[k].c_n); } } fprintf(gps_file, "\n"); } } if (kml_file) { snprintf(buf, sizeof (buf), kml_coord_fmt, f->gps.data[i].lon, f->gps.data[i].lat, baro + baro_offset, f->gps.data[i].alt, (f->gps.data[i].time - boost_start) / 100.0, nsat); fprintf(kml_file, "%s", buf); if (state_idx + 1 < f->state.num && f->state.data[state_idx + 1].time <= f->gps.data[i].time) { state_idx++; if (f->state.data[state_idx - 1].value != f->state.data[state_idx].value) { fprintf(kml_file, "%s", kml_placemark_end); fprintf(kml_file, kml_placemark_start, state_names[(int)f->state.data[state_idx].value], state_names[(int)f->state.data[state_idx].value]); fprintf(kml_file, "%s", buf); } } } } if (kml_file) fprintf(kml_file, "%s", kml_footer); } if (cooked && plot_name) { struct cc_perioddata *speed; plsdev("svgcairo"); plsfnam(plot_name); #define PLOT_DPI 96 plspage(PLOT_DPI, PLOT_DPI, 8 * PLOT_DPI, 8 * PLOT_DPI, 0, 0); plscolbg(0xff, 0xff, 0xff); plscol0(1,0,0,0); plstar(2, 3); speed = merge_data(&cooked->accel_speed, &cooked->pres_speed, apogee); plot_perioddata(&cooked->pres_pos, "meters", "Height", -1e10, 1e10, PLOT_HEIGHT); plot_perioddata(&cooked->pres_pos, "meters", "Height to Apogee", boost_start, apogee + (apogee - boost_start) / 10.0, PLOT_HEIGHT); plot_perioddata(speed, "meters/second", "Speed", -1e10, 1e10, PLOT_SPEED); plot_perioddata(speed, "meters/second", "Speed to Apogee", boost_start, apogee + (apogee - boost_start) / 10.0, PLOT_SPEED); plot_perioddata(&cooked->accel_accel, "meters/second²", "Acceleration", -1e10, 1e10, PLOT_ACCEL); /* plot_perioddata(&cooked->accel_accel, "meters/second²", "Acceleration during Boost", boost_start, boost_stop + (boost_stop - boost_start) / 2.0, PLOT_ACCEL); */ plot_timedata(&cooked->accel, "meters/second²", "Acceleration during Boost", boost_start, boost_stop + (boost_stop - boost_start) / 2.0, PLOT_ACCEL); free(speed->data); free(speed); plend(); } if (cooked) cc_flightcooked_free(cooked); } static const struct option options[] = { { .name = "summary", .has_arg = 2, .val = 's' }, { .name = "detail", .has_arg = 2, .val = 'd' }, { .name = "plot", .has_arg = 2, .val = 'p' }, { .name = "raw", .has_arg = 2, .val = 'r' }, { .name = "gps", .has_arg = 2, .val = 'g' }, { .name = "kml", .has_arg = 2, .val = 'k' }, { .name = "all", .has_arg = 0, .val = 'a' }, { 0, 0, 0, 0}, }; static void usage(char *program) { fprintf(stderr, "usage: %s\n" "\t[--all] [-a]\n" "\t[--summary=] [-s ]\n" "\t[--detail=]\n" "\t[--raw= -r -p ]\n" "\t[--gps= -g ]\n" "\t[--kml= -k ]\n" "\t{flight-log} ...\n", program); exit(1); } char * replace_extension(char *file, char *extension) { char *slash; char *dot; char *new; int newlen; slash = strrchr(file, '/'); dot = strrchr(file, '.'); if (!dot || (slash && dot < slash)) dot = file + strlen(file); newlen = (dot - file) + strlen (extension) + 1; new = malloc (newlen); strncpy (new, file, dot - file); new[dot-file] = '\0'; strcat (new, extension); return new; } FILE * open_output(char *outname, char *inname, char *extension) { char *o; FILE *out; if (outname) o = outname; else o = replace_extension(inname, extension); out = fopen(o, "w"); if (!out) { perror (o); exit(1); } if (o != outname) free(o); return out; } int main (int argc, char **argv) { FILE *file; FILE *summary_file = NULL; FILE *detail_file = NULL; FILE *raw_file = NULL; FILE *gps_file = NULL; FILE *kml_file = NULL; int i; int ret = 0; struct cc_flightraw *raw; int c; int serial; char *s; char *summary_name = NULL; char *detail_name = NULL; char *raw_name = NULL; char *plot_name = NULL; char *gps_name = NULL; char *kml_name = NULL; int has_summary = 0; int has_detail = 0; int has_plot = 0; int has_raw = 0; int has_gps = 0; int has_kml = 0; char *this_plot_name = NULL;; while ((c = getopt_long(argc, argv, "s:d:p:r:g:k:a", options, NULL)) != -1) { switch (c) { case 's': summary_name = optarg; has_summary = 1; break; case 'd': detail_name = optarg; has_detail = 1; break; case 'p': plot_name = optarg; has_plot = 1; break; case 'r': raw_name = optarg; has_raw = 1; break; case 'g': gps_name = optarg; has_gps = 1; break; case 'k': kml_name = optarg; has_kml = 1; break; case 'a': has_summary = has_detail = has_plot = has_raw = has_gps = has_kml = 1; break; default: usage(argv[0]); break; } } if (!has_summary) summary_file = stdout; for (i = optind; i < argc; i++) { file = fopen(argv[i], "r"); if (!file) { perror(argv[i]); ret++; continue; } if (has_summary && !summary_file) summary_file = open_output(summary_name, argv[i], ".summary"); if (has_detail && !detail_file) detail_file = open_output(detail_name, argv[i], ".detail"); if (has_plot) { if (plot_name) this_plot_name = plot_name; else this_plot_name = replace_extension(argv[i], ".plot"); } if (has_raw && !raw_file) raw_file = open_output(raw_name, argv[i], ".raw"); if (has_gps && !gps_file) gps_file = open_output(gps_name, argv[i], ".gps"); if (has_kml && !kml_file) kml_file = open_output(kml_name, argv[i], ".kml"); s = strstr(argv[i], "-serial-"); if (s) serial = atoi(s + 8); else serial = 0; raw = cc_log_read(file); if (!raw) { perror(argv[i]); ret++; continue; } if (!raw->serial) raw->serial = serial; analyse_flight(raw, summary_file, detail_file, raw_file, this_plot_name, gps_file, kml_file); cc_flightraw_free(raw); if (has_summary && !summary_name) { fclose(summary_file); summary_file = NULL; } if (has_detail && !detail_name) { fclose(detail_file); detail_file = NULL; } if (this_plot_name && this_plot_name != plot_name) { free (this_plot_name); this_plot_name = NULL; } if (has_raw && !raw_name) { fclose(raw_file); raw_file = NULL; } if (has_gps && !gps_name) { fclose(gps_file); gps_file = NULL; } if (has_kml && !kml_name) { fclose(kml_file); kml_file = NULL; } } return ret; }