mirror of
https://git.intern.spaceteamaachen.de/ALPAKA/SPATZ.git
synced 2025-06-10 01:55:59 +00:00
192 lines
6.9 KiB
Python
192 lines
6.9 KiB
Python
from numpy.typing import ArrayLike
|
|
from typing import List, AnyStr
|
|
from numpy import matrix
|
|
from typing import List
|
|
import re
|
|
from io import StringIO
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
import math
|
|
|
|
from spatz.sensors import Sensor
|
|
from spatz.simulation import Simulation
|
|
from spatz.transforms import Transform
|
|
from spatz.dataset import Dataset
|
|
from spatz.logger import Logger
|
|
import time
|
|
|
|
GAIN_NAME = "Abs(Dir.)"
|
|
#GAIN_NAME = "Abs(Gain)"
|
|
|
|
'''
|
|
Class representing a CST gain pattern
|
|
This (and the sensor below) follow the convetions laid out by https://www.antenna-theory.com/basics/radpattern.php.
|
|
I.e, theta represents the elevation angle and goes from 0 to 180 deg, Phi represents the azimuth angle.
|
|
|
|
The data is interpolated, you will have to specify the step size for this to work correctly.
|
|
'''
|
|
|
|
class GainPattern():
|
|
def __init__(self, filepath: str, step_size: int):
|
|
self._stepsize = step_size
|
|
# This is a cursed parser. If it breaks, though luck.
|
|
with open(filepath,"r") as file:
|
|
# Read Header
|
|
header = file.readline()
|
|
header = re.sub(r'\[(.*?)\]',",",header).replace(" ","").replace(",\n",'\n')
|
|
|
|
# Discard ---- line
|
|
file.readline()
|
|
|
|
# Parse to DF
|
|
lines = file.readlines()
|
|
clean_csv = [header]
|
|
start_time = time.time()
|
|
num_lines = len(lines)
|
|
for i,line in enumerate(lines):
|
|
if(i % step_size == 0 or i == num_lines-1):
|
|
cleaned = re.sub(r'\s+',',',line).removeprefix(',').removesuffix(',').strip()
|
|
clean_csv.append(cleaned + '\n')
|
|
|
|
clean_csv = ''.join(clean_csv)
|
|
filelike = StringIO(clean_csv)
|
|
self._df = pd.read_csv(filelike)
|
|
|
|
print(f"Processed {num_lines} lines in {(time.time()-start_time):.1f}s.")
|
|
print(f"Used {num_lines // step_size} lines due to step size")
|
|
|
|
self._df.to_csv("gainpattern.csv")
|
|
|
|
|
|
|
|
|
|
def get_phi_cut(self, phi:float) -> ArrayLike: #Return farfield cut with phi = const (Looking from the side)
|
|
assert 0 <= phi < 180
|
|
sub_df = self._df.loc[self._df["Phi"] == phi]
|
|
angles = sub_df["Theta"]
|
|
gain = sub_df[GAIN_NAME]
|
|
return angles,gain
|
|
|
|
def get_theta_cut(self, theta:float) -> ArrayLike: #Return farfield cut with theta = const (looking from the top)
|
|
assert 0<= theta < 180
|
|
sub_df_left = self._df.loc[self._df["Theta"] == theta]
|
|
angles_l = sub_df_left["Phi"]
|
|
gain_l = sub_df_left[GAIN_NAME]
|
|
|
|
sub_df_right = self._df.loc[self._df["Theta"] == (360-theta)]
|
|
angles_r = sub_df_right["Phi"]+180
|
|
gain_r = sub_df_right[GAIN_NAME]
|
|
|
|
angles = pd.concat([angles_l,angles_r])
|
|
gain = pd.concat([gain_l,gain_r])
|
|
|
|
return angles,gain
|
|
|
|
|
|
|
|
def __get_gain_internal(self,phi_step:float,theta_step:float):
|
|
assert phi_step%self._stepsize ==0
|
|
assert theta_step%self._stepsize==0
|
|
|
|
row = self._df.loc[(self._df["Theta"] == theta_step) & (self._df["Phi"] == phi_step)].iloc[0]
|
|
return row[GAIN_NAME]
|
|
|
|
def get_gain(self, phi, theta) -> float:
|
|
assert 0 <= phi < 360
|
|
assert 0 <= theta < 180
|
|
|
|
#Interpolate using binlinear interpolation https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
phi_lower = math.floor(phi/self._stepsize)*self._stepsize
|
|
phi_upper = phi_lower + self._stepsize
|
|
theta_lower = math.floor(theta/self._stepsize)*self._stepsize
|
|
theta_upper = theta_lower + self._stepsize
|
|
|
|
G11 = self.__get_gain_internal(phi_lower,theta_lower)
|
|
G12 = self.__get_gain_internal(phi_lower,theta_upper)
|
|
G21 = self.__get_gain_internal(phi_upper,theta_lower)
|
|
G22 = self.__get_gain_internal(phi_upper,theta_upper)
|
|
|
|
v1 = np.array([phi_upper-phi,phi-phi_lower])
|
|
v2 = np.array([[theta_upper-theta],[theta-theta_lower]])
|
|
A = np.array([[G11,G12],[G21,G22]])
|
|
|
|
interpolated = 1/(self._stepsize*self._stepsize) * v1 @ A @ v2
|
|
|
|
return interpolated[0]
|
|
|
|
|
|
'''
|
|
Sensor to simulate TX antenna gain in direction of ground station
|
|
|
|
Returns the gain in dBi per timestep.
|
|
|
|
'''
|
|
|
|
class AntennaTxGain(Sensor):
|
|
|
|
def __init__(self, dataset: Dataset, logger: Logger, transforms: List[Transform] = [], gain_pattern_path = "data/gain_pattern/farfield.txt", step_size=1):
|
|
super().__init__(dataset, logger, transforms)
|
|
self._pattern = GainPattern(gain_pattern_path,step_size)
|
|
|
|
def _get_data(self) -> ArrayLike | float:
|
|
magic_matrix = np.array([
|
|
[0,1,0],
|
|
[1,0,0],
|
|
[0,0,-1]
|
|
])
|
|
|
|
# Get current position of rocket in FL Frame (Launcher Frame).
|
|
pos_fl = self._dataset.fetch_values(['x', 'y', 'z']) #X,Y,Z is in FL (Launcher frame) -> Z is up, X is east
|
|
|
|
gs_offset_fl = np.array([-1810,-1500,100]) #Radar hill is approx 1.81km west. 1.5km south, 100higher
|
|
rocket_to_gs_fl = pos_fl-gs_offset_fl
|
|
rocket_to_gs_fl_n = rocket_to_gs_fl/np.linalg.norm(rocket_to_gs_fl)
|
|
|
|
# Rocket in body frame is simply [1,0,0]^T by definition
|
|
rocket_b = np.array([1,0,0])
|
|
rocket_fl = magic_matrix @ np.linalg.inv(self._dataset.launch_rail_to_body()) @ rocket_b
|
|
rocket_fl_n = rocket_fl / np.linalg.norm(rocket_fl)
|
|
|
|
|
|
|
|
# Angle between rocket and pos returns elevation angle (Phi). Assume a rotation of 0° for now to get theta
|
|
theta = 180-np.rad2deg(np.arccos(np.clip(np.dot(rocket_to_gs_fl_n,rocket_fl_n),-1.0,1.0))) #Clip trick from: https://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python
|
|
|
|
self._log("rocket_x",rocket_fl_n[0])
|
|
self._log("rocket_y",rocket_fl_n[1])
|
|
self._log("rocket_z",rocket_fl_n[2])
|
|
self._log("pos_x",rocket_to_gs_fl_n[0])
|
|
self._log("pos_y",rocket_to_gs_fl_n[1])
|
|
self._log("pos_z",rocket_to_gs_fl_n[2])
|
|
self._log("theta",theta)
|
|
#return phi
|
|
|
|
#Get Theta cut for this angle
|
|
angles, gains = self._pattern.get_theta_cut(np.round(theta))
|
|
|
|
min_gain = np.min(gains)
|
|
#min_ix = np.argmin(gains)
|
|
#min_angle = angles[min_ix]
|
|
#self._log("works_case_angle",min_angle)
|
|
|
|
|
|
#min_gain = self._pattern.get_gain(45,theta)
|
|
|
|
# Fetch gain in this direction
|
|
return min_gain
|
|
|
|
def _sensor_specific_effects(self, x: ArrayLike) -> ArrayLike:
|
|
return x
|
|
|
|
def _get_name(self) -> AnyStr:
|
|
return 'antenna/tx_gain'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pattern = GainPattern("data/gain_pattern/farfield_all.txt")
|
|
print(pattern.get_gain(0,12))
|
|
print(pattern.get_gain(0,16))
|
|
print(pattern.get_gain(6,12))
|
|
print(pattern.get_gain(0,10))
|
|
print(pattern.get_theta_cut(90)) |