mirror of
https://git.intern.spaceteamaachen.de/ALPAKA/SPATZ.git
synced 2025-06-10 18:15:59 +00:00
75 lines
1.8 KiB
Python
75 lines
1.8 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
|
|
from typing import Any, Tuple
|
|
from numpy.typing import ArrayLike
|
|
|
|
from abc import abstractmethod
|
|
|
|
|
|
class Advanceable:
|
|
def __init__(self) -> None:
|
|
self.reset()
|
|
|
|
def step(self, dt: float):
|
|
"""Advances the simulation data in time.
|
|
|
|
Args:
|
|
dt (float): The step in time to make.
|
|
"""
|
|
self.__t += dt
|
|
self._on_step(dt)
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset the Avanceable object to its initial state.
|
|
"""
|
|
self.__t = 0
|
|
self._on_reset()
|
|
|
|
@abstractmethod
|
|
def _on_step(self, dt: float):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _on_reset(self):
|
|
pass
|
|
|
|
def get_time(self) -> float:
|
|
"""
|
|
Returns:
|
|
float: Returns the current time of the Advanceable.
|
|
"""
|
|
return self.__t
|
|
|
|
|
|
class Logger(Advanceable):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.__idx = -1
|
|
|
|
def _on_step(self, _: float):
|
|
self.__df = pd.concat([self.__df, pd.DataFrame()], ignore_index=True)
|
|
self.__idx += 1
|
|
self.__df.loc[self.__idx, 'time'] = self.get_time()
|
|
|
|
def _on_reset(self):
|
|
self.__df = pd.DataFrame.from_dict({'time': [self.get_time()]}).astype(np.float64)
|
|
|
|
def write(self, attrib: str, value: Any, domain: str = 'all'):
|
|
"""Writes a value to the logger.
|
|
|
|
Args:
|
|
attrib (str): The name of the value to log.
|
|
value (Any): The value to log.
|
|
domain (str, optional): The domain the value belongs to. Defaults to 'any'.
|
|
"""
|
|
name = domain + '/' + attrib
|
|
|
|
if name not in self.__df.columns:
|
|
self.__df[name] = pd.Series([pd.NA] * len(self.__df))
|
|
|
|
self.__df.loc[self.__idx, name] = value
|
|
|
|
def get_dataframe(self) -> pd.DataFrame:
|
|
return self.__df |