mirror of
https://git.intern.spaceteamaachen.de/ALPAKA/SPATZ.git
synced 2025-06-11 02:26:00 +00:00
TX Gain and Pathloss sensors now recieve the groundstation offset the same way. Allso added constants file for ease of use
192 lines
6.9 KiB
Python
192 lines
6.9 KiB
Python
from numpy.typing import ArrayLike
|
|
from typing import List, AnyStr
|
|
from numpy import matrix
|
|
from typing import List
|
|
import re
|
|
from io import StringIO
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
import math
|
|
|
|
from spatz.sensors import Sensor
|
|
from spatz.simulation import Simulation
|
|
from spatz.transforms import Transform
|
|
from spatz.dataset import Dataset
|
|
from spatz.logger import Logger
|
|
import time
|
|
|
|
GAIN_NAME = "Abs(Dir.)"
|
|
#GAIN_NAME = "Abs(Gain)"
|
|
|
|
'''
|
|
Class representing a CST gain pattern
|
|
This (and the sensor below) follow the convetions laid out by https://www.antenna-theory.com/basics/radpattern.php.
|
|
I.e, theta represents the elevation angle and goes from 0 to 180 deg, Phi represents the azimuth angle.
|
|
|
|
The data is interpolated, you will have to specify the step size for this to work correctly.
|
|
'''
|
|
|
|
class GainPattern():
|
|
def __init__(self, filepath: str, step_size: int):
|
|
self._stepsize = step_size
|
|
# This is a cursed parser. If it breaks, though luck.
|
|
with open(filepath,"r") as file:
|
|
# Read Header
|
|
header = file.readline()
|
|
header = re.sub(r'\[(.*?)\]',",",header).replace(" ","").replace(",\n",'\n')
|
|
|
|
# Discard ---- line
|
|
file.readline()
|
|
|
|
# Parse to DF
|
|
lines = file.readlines()
|
|
clean_csv = [header]
|
|
start_time = time.time()
|
|
num_lines = len(lines)
|
|
for i,line in enumerate(lines):
|
|
if(i % step_size == 0 or i == num_lines-1):
|
|
cleaned = re.sub(r'\s+',',',line).removeprefix(',').removesuffix(',').strip()
|
|
clean_csv.append(cleaned + '\n')
|
|
|
|
clean_csv = ''.join(clean_csv)
|
|
filelike = StringIO(clean_csv)
|
|
self._df = pd.read_csv(filelike)
|
|
|
|
print(f"Processed {num_lines} lines in {(time.time()-start_time):.1f}s.")
|
|
print(f"Used {num_lines // step_size} lines due to step size")
|
|
|
|
self._df.to_csv("gainpattern.csv")
|
|
|
|
|
|
|
|
|
|
def get_phi_cut(self, phi:float) -> ArrayLike: #Return farfield cut with phi = const (Looking from the side)
|
|
assert 0 <= phi < 180
|
|
sub_df = self._df.loc[self._df["Phi"] == phi]
|
|
angles = sub_df["Theta"]
|
|
gain = sub_df[GAIN_NAME]
|
|
return angles,gain
|
|
|
|
def get_theta_cut(self, theta:float) -> ArrayLike: #Return farfield cut with theta = const (looking from the top)
|
|
assert 0<= theta < 180
|
|
sub_df_left = self._df.loc[self._df["Theta"] == theta]
|
|
angles_l = sub_df_left["Phi"]
|
|
gain_l = sub_df_left[GAIN_NAME]
|
|
|
|
sub_df_right = self._df.loc[self._df["Theta"] == (360-theta)]
|
|
angles_r = sub_df_right["Phi"]+180
|
|
gain_r = sub_df_right[GAIN_NAME]
|
|
|
|
angles = pd.concat([angles_l,angles_r])
|
|
gain = pd.concat([gain_l,gain_r])
|
|
|
|
return angles,gain
|
|
|
|
|
|
|
|
def __get_gain_internal(self,phi_step:float,theta_step:float):
|
|
assert phi_step%self._stepsize ==0
|
|
assert theta_step%self._stepsize==0
|
|
|
|
row = self._df.loc[(self._df["Theta"] == theta_step) & (self._df["Phi"] == phi_step)].iloc[0]
|
|
return row[GAIN_NAME]
|
|
|
|
def get_gain(self, phi, theta) -> float:
|
|
assert 0 <= phi < 360
|
|
assert 0 <= theta < 180
|
|
|
|
#Interpolate using binlinear interpolation https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
phi_lower = math.floor(phi/self._stepsize)*self._stepsize
|
|
phi_upper = phi_lower + self._stepsize
|
|
theta_lower = math.floor(theta/self._stepsize)*self._stepsize
|
|
theta_upper = theta_lower + self._stepsize
|
|
|
|
G11 = self.__get_gain_internal(phi_lower,theta_lower)
|
|
G12 = self.__get_gain_internal(phi_lower,theta_upper)
|
|
G21 = self.__get_gain_internal(phi_upper,theta_lower)
|
|
G22 = self.__get_gain_internal(phi_upper,theta_upper)
|
|
|
|
v1 = np.array([phi_upper-phi,phi-phi_lower])
|
|
v2 = np.array([[theta_upper-theta],[theta-theta_lower]])
|
|
A = np.array([[G11,G12],[G21,G22]])
|
|
|
|
interpolated = 1/(self._stepsize*self._stepsize) * v1 @ A @ v2
|
|
|
|
return interpolated[0]
|
|
|
|
|
|
'''
|
|
Sensor to simulate TX antenna gain in direction of ground station
|
|
|
|
Returns the gain in dBi per timestep.
|
|
|
|
'''
|
|
|
|
class AntennaTxGain(Sensor):
|
|
|
|
def __init__(self, dataset: Dataset, logger: Logger, transforms: List[Transform] = [], gain_pattern_path = "data/gain_pattern/farfield.txt", step_size=1, rx_antenna_offset: ArrayLike = np.array([0,0,0])):
|
|
super().__init__(dataset, logger, transforms)
|
|
self._pattern = GainPattern(gain_pattern_path,step_size)
|
|
self._rx_antenna_offset = rx_antenna_offset
|
|
|
|
def _get_data(self) -> ArrayLike | float:
|
|
magic_matrix = np.array([
|
|
[0,1,0],
|
|
[1,0,0],
|
|
[0,0,-1]
|
|
])
|
|
|
|
# Get current position of rocket in FL Frame (Launcher Frame).
|
|
pos_fl = self._dataset.fetch_values(['x', 'y', 'z']) #X,Y,Z is in FL (Launcher frame) -> Z is up, X is east
|
|
|
|
rocket_to_gs_fl = pos_fl-self._rx_antenna_offset
|
|
rocket_to_gs_fl_n = rocket_to_gs_fl/np.linalg.norm(rocket_to_gs_fl)
|
|
|
|
# Rocket in body frame is simply [1,0,0]^T by definition
|
|
rocket_b = np.array([1,0,0])
|
|
rocket_fl = magic_matrix @ np.linalg.inv(self._dataset.launch_rail_to_body()) @ rocket_b
|
|
rocket_fl_n = rocket_fl / np.linalg.norm(rocket_fl)
|
|
|
|
|
|
|
|
# Angle between rocket and pos returns elevation angle (Phi). Assume a rotation of 0° for now to get theta
|
|
theta = 180-np.rad2deg(np.arccos(np.clip(np.dot(rocket_to_gs_fl_n,rocket_fl_n),-1.0,1.0))) #Clip trick from: https://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python
|
|
|
|
self._log("rocket_x",rocket_fl_n[0])
|
|
self._log("rocket_y",rocket_fl_n[1])
|
|
self._log("rocket_z",rocket_fl_n[2])
|
|
self._log("pos_x",rocket_to_gs_fl_n[0])
|
|
self._log("pos_y",rocket_to_gs_fl_n[1])
|
|
self._log("pos_z",rocket_to_gs_fl_n[2])
|
|
self._log("theta",theta)
|
|
#return phi
|
|
|
|
#Get Theta cut for this angle
|
|
#angles, gains = self._pattern.get_theta_cut(np.round(theta))
|
|
|
|
#min_gain = np.min(gains)
|
|
#min_ix = np.argmin(gains)
|
|
#min_angle = angles[min_ix]
|
|
#self._log("works_case_angle",min_angle)
|
|
|
|
|
|
min_gain = self._pattern.get_gain(45,theta)
|
|
|
|
# Fetch gain in this direction
|
|
return min_gain
|
|
|
|
def _sensor_specific_effects(self, x: ArrayLike) -> ArrayLike:
|
|
return x
|
|
|
|
def _get_name(self) -> AnyStr:
|
|
return 'antenna/tx_gain'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pattern = GainPattern("data/gain_pattern/farfield_all.txt")
|
|
print(pattern.get_gain(0,12))
|
|
print(pattern.get_gain(0,16))
|
|
print(pattern.get_gain(6,12))
|
|
print(pattern.get_gain(0,10))
|
|
print(pattern.get_theta_cut(90)) |