61 lines
1.4 KiB
Python

import numpy as np
from numpy.typing import ArrayLike
from typing import Any, Tuple
from spatz.transforms import Transform
class GaussianNoise(Transform):
def __init__(self, mu: ArrayLike = None, sigma: ArrayLike = None) -> None:
super().__init__()
self.__mu = mu
self.__sigma = sigma
def __call__(self, _: float, x: ArrayLike) -> ArrayLike:
if np.isscalar(x):
noise = np.random.normal(0, 1)
x += self.__sigma * noise + self.__mu
else:
dim = len(x)
if np.isscalar(self.__sigma):
sigma = np.identity(dim) * self.__sigma
else:
sigma = self.__sigma
if np.isscalar(self.__mu):
mu = np.ones(dim) * self.__mu
else:
mu = self.__mu
noise = np.random.normal(0, 1, np.shape(x))
x += sigma @ noise + mu
return x
class ProportionalGaussian(Transform):
def __init__(self, mu, sigma) -> None:
super().__init__()
self.__mu = mu
self.__sigma = sigma
def __call__(self, _: float, x: ArrayLike) -> ArrayLike:
noise = np.random.normal(0, 1)
x += (self.__sigma * x) * noise + (self.__mu * x)
return x
class PinkNoise(Transform):
def __init__(self) -> None:
super().__init__()
def __call__(self, t: float, x: ArrayLike) -> Any:
pass