Updated sensors

This commit is contained in:
dario
2024-06-20 18:13:59 +02:00
parent c0ccd93acf
commit 43bc71c742
11 changed files with 57112 additions and 39 deletions

View File

@@ -1,3 +1,3 @@
from spatz.transforms.transform import Transform
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian, DriftingBias
from spatz.transforms.failures import Downtime

View File

@@ -37,6 +37,35 @@ class GaussianNoise(Transform):
return x
class DriftingBias(Transform):
def __init__(self, init: ArrayLike, covariance: ArrayLike, Tc: float) -> None:
"""First order Gauss-Markov (GM) model used to model drift.
Args:
init (ArrayLike): The initial bias.
covariance (ArrayLike): Covariance matrix of the process.
Tc (float): Correlation time of the process.
"""
super().__init__()
self.__t = 0
self.__beta = 1 / Tc
self.__covariance = covariance
self.__Tc = Tc
self.__x_old = np.copy(init)
def __call__(self, t: float, x: ArrayLike) -> ArrayLike:
dt = t - self.__t
self.__t = t
w = np.random.normal(np.zeros_like(x), self.__covariance*(1-np.exp(-2 * dt / self.__Tc)))
drift = (1 - self.__beta * dt) * self.__x_old + w
self.__x_old = drift
return x + drift
class ProportionalGaussian(Transform):
def __init__(self, mu, sigma) -> None:
super().__init__()