mirror of
https://git.intern.spaceteamaachen.de/ALPAKA/SPATZ.git
synced 2025-09-28 21:17:33 +00:00
Updated sensors
This commit is contained in:
@@ -1,3 +1,3 @@
|
||||
from spatz.transforms.transform import Transform
|
||||
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian
|
||||
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian, DriftingBias
|
||||
from spatz.transforms.failures import Downtime
|
@@ -37,6 +37,35 @@ class GaussianNoise(Transform):
|
||||
return x
|
||||
|
||||
|
||||
class DriftingBias(Transform):
|
||||
def __init__(self, init: ArrayLike, covariance: ArrayLike, Tc: float) -> None:
|
||||
"""First order Gauss-Markov (GM) model used to model drift.
|
||||
|
||||
Args:
|
||||
init (ArrayLike): The initial bias.
|
||||
covariance (ArrayLike): Covariance matrix of the process.
|
||||
Tc (float): Correlation time of the process.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.__t = 0
|
||||
self.__beta = 1 / Tc
|
||||
self.__covariance = covariance
|
||||
self.__Tc = Tc
|
||||
self.__x_old = np.copy(init)
|
||||
|
||||
def __call__(self, t: float, x: ArrayLike) -> ArrayLike:
|
||||
dt = t - self.__t
|
||||
self.__t = t
|
||||
|
||||
w = np.random.normal(np.zeros_like(x), self.__covariance*(1-np.exp(-2 * dt / self.__Tc)))
|
||||
drift = (1 - self.__beta * dt) * self.__x_old + w
|
||||
|
||||
self.__x_old = drift
|
||||
|
||||
return x + drift
|
||||
|
||||
|
||||
class ProportionalGaussian(Transform):
|
||||
def __init__(self, mu, sigma) -> None:
|
||||
super().__init__()
|
||||
|
Reference in New Issue
Block a user