mirror of
https://git.intern.spaceteamaachen.de/ALPAKA/SPATZ.git
synced 2025-09-28 21:17:33 +00:00
Updated sensors
This commit is contained in:
@@ -29,7 +29,6 @@ class Accelerometer(Sensor):
|
||||
def __init__(
|
||||
self, dataset: DataSource,
|
||||
logger: Logger,
|
||||
coord_system: CoordSystem = CoordSystem.RIGHT_HANDED,
|
||||
orientation: NDArray = np.identity(3),
|
||||
offset: float = 0,
|
||||
transforms: List[Transform] = []):
|
||||
@@ -48,27 +47,22 @@ class Accelerometer(Sensor):
|
||||
assert orientation.shape == (3, 3), 'Orientation has to be a 3x3 matrix.'
|
||||
|
||||
self._offset = np.array([offset, 0, 0])
|
||||
self._coord_system = coord_system
|
||||
self._orientation = orientation
|
||||
|
||||
def _get_data(self) -> ArrayLike | float:
|
||||
acc = self._dataset.get_acceleration('global')
|
||||
|
||||
# self._logger.write('global_ax', acc[0], self._get_name())
|
||||
# self._logger.write('global_ay', acc[1], self._get_name())
|
||||
# self._logger.write('global_az', acc[2], self._get_name())
|
||||
self._logger.write('global_ax', acc[0], self._get_name())
|
||||
self._logger.write('global_ay', acc[1], self._get_name())
|
||||
self._logger.write('global_az', acc[2], self._get_name())
|
||||
|
||||
# Convert FL to body
|
||||
acc = self._dataset.global_to_local() @ acc
|
||||
# acc += mat @ np.array([0, 0, g])
|
||||
acc += self._dataset.global_to_local() @ np.array([0, 0, g])
|
||||
|
||||
# self._logger.write('local_x', acc[0], self._get_name())
|
||||
# self._logger.write('local_y', acc[1], self._get_name())
|
||||
# self._logger.write('local_z', acc[2], self._get_name())
|
||||
|
||||
# Flip axes to sensor's perspective. Spatz uses a right-handed coordinate system.
|
||||
#if self._coord_system == CoordSystem.LEFT_HANDED:
|
||||
# acc[1] *= -1
|
||||
self._logger.write('local_x', acc[0], self._get_name())
|
||||
self._logger.write('local_y', acc[1], self._get_name())
|
||||
self._logger.write('local_z', acc[2], self._get_name())
|
||||
|
||||
# Rotate the acceleration vector to accomodate the accelerometer's orientation on the rocket.
|
||||
acc = self._orientation @ acc
|
||||
|
@@ -1,21 +1,30 @@
|
||||
import numpy as np
|
||||
|
||||
from numpy.typing import ArrayLike
|
||||
from typing import List
|
||||
|
||||
from spatz.sensors import Sensor
|
||||
from spatz.transforms import Transform
|
||||
from spatz.dataset import Dataset
|
||||
from spatz.simulations.data_source import DataSource
|
||||
from spatz.logger import Logger
|
||||
|
||||
|
||||
class Gyroscope(Sensor):
|
||||
def __init__(self, dataset: DataSource, logger: Logger, offset: float = 0, transforms: List[Transform] = []):
|
||||
def __init__(self, dataset: DataSource, logger: Logger, orientation=np.identity(3), transforms: List[Transform] = []):
|
||||
super().__init__(dataset, logger, transforms)
|
||||
|
||||
self._offset = offset
|
||||
self._orientation = orientation
|
||||
|
||||
def calibrate(self, n_samples):
|
||||
return np.sum(self() for i in range(n_samples)) / n_samples
|
||||
|
||||
def _get_data(self) -> ArrayLike | float:
|
||||
# Rotation in rad/sec
|
||||
x = self._dataset.get_angular_velocity()
|
||||
omegas = self._dataset.get_angular_velocity()
|
||||
omegas = self._orientation @ omegas
|
||||
|
||||
return x
|
||||
self._log('ox', omegas[0])
|
||||
self._log('oy', omegas[1])
|
||||
self._log('oz', omegas[2])
|
||||
|
||||
return omegas
|
||||
|
@@ -13,7 +13,7 @@ from spatz.transforms import Transform
|
||||
|
||||
class H3LIS100DL(Accelerometer):
|
||||
def __init__(self, dataset: DataSource, logger: Logger, orientation=np.identity(3), offset: float = 0, transforms: List[Transform] = []):
|
||||
super().__init__(dataset, logger, CoordSystem.RIGHT_HANDED, orientation, offset, transforms)
|
||||
super().__init__(dataset, logger, orientation, offset, transforms)
|
||||
|
||||
def _get_name(self) -> AnyStr:
|
||||
return "H3LIS100DL"
|
||||
@@ -23,6 +23,14 @@ class H3LIS100DL(Accelerometer):
|
||||
g = 9.81
|
||||
x = np.floor(np.clip(x, -100*g, +100*g) / g)
|
||||
|
||||
for i in range(3):
|
||||
value = np.random.random()
|
||||
if (value < 0.1):
|
||||
x[i] += 1
|
||||
|
||||
if (value > 0.9):
|
||||
x[i] -= 1
|
||||
|
||||
return x
|
||||
|
||||
|
||||
|
@@ -4,7 +4,7 @@ from typing import AnyStr, List
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from spatz.sensors import Accelerometer, Gyroscope, IMU, CoordSystem
|
||||
from spatz.transforms import Transform, GaussianNoise
|
||||
from spatz.transforms import Transform, GaussianNoise, DriftingBias
|
||||
from spatz.simulations.data_source import DataSource
|
||||
from spatz.dataset import Dataset
|
||||
from spatz.logger import Logger
|
||||
@@ -14,26 +14,37 @@ class WSEN_ISDS(IMU):
|
||||
pass
|
||||
|
||||
|
||||
g = 9.81
|
||||
|
||||
|
||||
class WSEN_ISDS_ACC(Accelerometer):
|
||||
def __init__(self, dataset: DataSource, logger: Logger, orientation=np.identity(3), offset=0, transforms: List[Transform] = []):
|
||||
super().__init__(dataset, logger, CoordSystem.LEFT_HANDED, orientation, offset, transforms)
|
||||
super().__init__(dataset, logger, orientation, offset, transforms)
|
||||
|
||||
self.__variance = 0.05
|
||||
self.__noise = GaussianNoise(np.zeros(3), np.identity(3) * self.__variance)
|
||||
self.__bias = DriftingBias(np.zeros(3), np.array([
|
||||
0.00113044 / g * 1000,
|
||||
0.00108539 / g * 1000,
|
||||
0.00127884 / g * 1000
|
||||
]), 400)
|
||||
|
||||
self.__constant_bias = np.random.normal(0, 0.81423, 3)
|
||||
|
||||
self.__normal = GaussianNoise(0, np.array([
|
||||
0.0003330315865455515 / g * 1000,
|
||||
0.00016874534484267122 / g * 1000,
|
||||
0.0003885568325537318 / g * 100
|
||||
]))
|
||||
|
||||
def _get_name(self) -> AnyStr:
|
||||
return 'WSEN_ISDS_ACC'
|
||||
|
||||
def _sensor_specific_effects(self, x: ArrayLike) -> ArrayLike:
|
||||
t = self._dataset.get_time()
|
||||
|
||||
g = 9.81
|
||||
|
||||
# Convert to milli-g.
|
||||
x = x / g * 1000
|
||||
|
||||
# Apply noise to the true values.
|
||||
y = self.__noise(t, x)
|
||||
y = self.__constant_bias + self.__normal(t, self.__bias(t, x))
|
||||
noise = y - x
|
||||
|
||||
# Log the chosen noise values.
|
||||
@@ -48,8 +59,12 @@ class WSEN_ISDS_ACC(Accelerometer):
|
||||
|
||||
|
||||
class WSEN_ISDS_GYRO(Gyroscope):
|
||||
def __init__(self, dataset: Dataset, logger: Logger, offset=0, transforms: List[Transform] = []):
|
||||
super().__init__(dataset, logger, offset, transforms)
|
||||
def __init__(self, dataset: Dataset, logger: Logger, orientation = np.identity(3), transforms: List[Transform] = []):
|
||||
super().__init__(dataset, logger, orientation, transforms)
|
||||
|
||||
self.__bias = DriftingBias(np.zeros(3), np.array([0.00218 * 1000, 0.00105 * 1000, 0.00203 * 1000]), 400)
|
||||
self.__constant_bias = np.random.normal(0, 2*2000, 3)
|
||||
self.__normal = GaussianNoise(0, np.array([0.0049272 * 1000, 0.00557833 * 1000, 0.00407826 * 1000]))
|
||||
|
||||
def _get_name(self) -> AnyStr:
|
||||
return 'WSEN_ISDS_GYRO'
|
||||
@@ -58,6 +73,9 @@ class WSEN_ISDS_GYRO(Gyroscope):
|
||||
# Convert to milli-degrees per second.
|
||||
x = (x / np.pi) * 180 * 1000
|
||||
|
||||
t = self._dataset.get_time()
|
||||
x = self.__constant_bias + self.__normal(t, self.__bias(t, x))
|
||||
|
||||
# TODO: Noise model.
|
||||
|
||||
self._log('ox', x[0])
|
||||
|
@@ -15,7 +15,7 @@ class MS5611(PressureSensor):
|
||||
# Noise model obtained by a test flight using this sensor.
|
||||
# self.__pad_noise = GaussianNoise(0, 0.03)
|
||||
# self.__flight_noise = GaussianNoise(0, 1.5)
|
||||
self.__noise = ProportionalGaussian(0, 0.0015)
|
||||
self.__noise = GaussianNoise(0, 0.00043300242654881085)
|
||||
|
||||
def _get_name(self) -> AnyStr:
|
||||
return 'MS5611'
|
||||
|
@@ -1,3 +1,3 @@
|
||||
from spatz.transforms.transform import Transform
|
||||
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian
|
||||
from spatz.transforms.noise import GaussianNoise, ProportionalGaussian, DriftingBias
|
||||
from spatz.transforms.failures import Downtime
|
@@ -37,6 +37,35 @@ class GaussianNoise(Transform):
|
||||
return x
|
||||
|
||||
|
||||
class DriftingBias(Transform):
|
||||
def __init__(self, init: ArrayLike, covariance: ArrayLike, Tc: float) -> None:
|
||||
"""First order Gauss-Markov (GM) model used to model drift.
|
||||
|
||||
Args:
|
||||
init (ArrayLike): The initial bias.
|
||||
covariance (ArrayLike): Covariance matrix of the process.
|
||||
Tc (float): Correlation time of the process.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.__t = 0
|
||||
self.__beta = 1 / Tc
|
||||
self.__covariance = covariance
|
||||
self.__Tc = Tc
|
||||
self.__x_old = np.copy(init)
|
||||
|
||||
def __call__(self, t: float, x: ArrayLike) -> ArrayLike:
|
||||
dt = t - self.__t
|
||||
self.__t = t
|
||||
|
||||
w = np.random.normal(np.zeros_like(x), self.__covariance*(1-np.exp(-2 * dt / self.__Tc)))
|
||||
drift = (1 - self.__beta * dt) * self.__x_old + w
|
||||
|
||||
self.__x_old = drift
|
||||
|
||||
return x + drift
|
||||
|
||||
|
||||
class ProportionalGaussian(Transform):
|
||||
def __init__(self, mu, sigma) -> None:
|
||||
super().__init__()
|
||||
|
Reference in New Issue
Block a user